Topic 4: Algebra

1) The Basics:

a) Adding / Subtracting Algebraic Expressions:

Notes:

> We can only add / subtract 'like terms'.
> 'Like terms' are terms that have the same letter part or the same variables
e.g. 5 d and -2 d are 'like terms' but 5 d and $5 \mathrm{~d}^{2}$ are NOT 'like terms'

Example 1:

$$
\begin{aligned}
& 4 a+5+2 a-3 \\
& =6 a+2
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
& 3 x^{2} y-4 y^{2}-x^{2} y-3 y+2 y^{2} \\
& =2 x^{2} y-2 y^{2}-3 y
\end{aligned}
$$

b) Multiplying Expressions:

Notes

> when multiplying we follow the order Signs, Numbers, Letters
> When multiplying the letters together we must remember the first law of indices..... $a^{m} \times a^{n}=a^{m+n}$ i.e. Add the Powers Example 1: Multiplying Terms

$$
\begin{array}{ll}
4 a^{2} \times 2 a^{5} & \text { (Multiply signs...(}+ \text {). }(+)=+ \text {) } \\
=8 a^{7} & \text { (Multiply Numbers \& Add Powers) }
\end{array}
$$

Example 2: Removing Brackets

$$
\begin{aligned}
& 2(g+4) \\
& =2 g+8
\end{aligned}
$$

Example 3: Removing Brackets

$$
\begin{aligned}
& (2 x-3)(x+2) \quad \text { ("Split and Repeat") } \\
& =2 x(x+2)-3(x+2) \\
& =2 x^{2}+4 x-3 x-6 \\
& =2 x^{2}+x-6
\end{aligned}
$$

2) Algebraic Fractions:

a) Adding/Subtracting Fractions:

Note:
> When adding/subtracting fractions together we find the common denominator and bring both terms up to the same denominator first.
Example 1:

$$
\begin{aligned}
& \frac{x+3}{5}-\frac{2 x-1}{3} \\
= & \frac{3(x+3)}{15}-\frac{5(2 x-1)}{15} \\
= & \frac{3 x+9}{15}-\frac{10 x-5}{15} \\
= & \frac{3 x+9-(10 x-5)}{15} \\
= & \frac{3 x+9-10 x+5}{15} \\
= & \frac{-7 x+14}{15}
\end{aligned}
$$

b) Dividing Expressions:

Tip: Can we factorise the numerator or the denominator? Example:

$$
\frac{2 x+6}{x^{2}-9}=\frac{2(x+3)}{(x+3)(x-3)}=\frac{2}{x-3}
$$

3) Factorising and Manipulation of Formulae:

a) Factorising:

1. Taking out the HCF (taking out what's common)

$$
\begin{array}{ll}
\text { e.g.s } \\
\begin{array}{ll}
\text { i) } 2 x-10 & \text { ii) } 3 x^{2}-18 x \\
=2(x-5) & =3 x(x-6)
\end{array}
\end{array}
$$

2. Grouping (always has 4 terms)

$$
\begin{aligned}
& \text { e.g.s } \\
& \begin{array}{ll}
\text { i) } a x+a y+b x+b y & \text { ii) } 3 p-3 q-p k+k q \\
=a(x+y)+b(x+y) & =3(p-q)-k(p-q) \\
=(x+y)(a+b) & =(p-q)(3-k)
\end{array}
\end{aligned}
$$

3. Quadratic (always has 3 terms x^{2}, x, a)

$$
\begin{aligned}
& \text { e.g.s } \\
& \begin{array}{ll}
\text { i) } x^{2}+5 x+6 & \text { ii) } x^{2}-3 x-18 \\
=(x+3)(x+2) & =(x-6)(x+3)
\end{array}
\end{aligned}
$$

4. Difference of 2 Squares (always 2 terms with a '-' between)

Note: Watch for square numbers: $1,4,9,16,25,36,49,64,81$....

$$
\begin{aligned}
& \text { e.g.s } \\
& x^{2}-9 \\
& =(x)^{2}-(3)^{2} \\
& =(x-3)(x+3)
\end{aligned}
$$

a) Solving Linear Equations: (x only)

Steps:

1. Remove all brackets and any fractions
2. Bring all terms with an ' x ' to one side and numbers to the other side
3. Tidy up both sides by putting together 'like terms'.
4. Solve the simple equation remaining

Example: $2(x-3)=4(x+1)$

$$
2 x-6=4 x+4
$$

$$
2 x-4 x=4+6
$$

$$
-2 x=10
$$

$$
x=\frac{10}{-2}
$$

$$
\Rightarrow x=-5
$$

c) Solving Quadratic Eqns by factorising: (Equations with an x^{2}) Steps:

1. Bring all terms to the left-hand side (LHS) and leave ' O ' on the RHS
2. Factorise the LHS (See section on Factorising in previous tab)
3. If LHS can't be factorised the 'Quadratic Formula' needs to be used (See Example 3 on the right)
4. Let each factor be $=0$
5. Solve the two simple equations to find the two answers.

Example: $\quad x^{2}-3 x-18=0$

$$
\left.\begin{array}{rlrl}
& (x-6)(x+3)=0 \\
x-6=0 & \text { or } & x+3 & =0 \\
x & x=6 & \text { or } & x
\end{array}\right)=-3-3 .
$$

5) Simultaneous Equations:

Steps:

1. Choose a variable to eliminate e.g. 'y'
2. Multiply one or both equations to make no. in front of y the same
3. Multiply the $2^{\text {nd }}$ equation by -1 , if necessary, to make signs in front of 'y' different.
4. Add the two equations to eliminate ' y ' and solve for ' x '.
5. Put x back into one of the equations to find y.

Example: Solve the equations below:
A: $2 x-3 y=7$
B: $3 x+2 y=4$

$$
\begin{aligned}
\text { Ax2: } 4 x-6 y=14 & \text { (mult by } 2 \text { to get } 6 \text { in front of } y \text {) } \\
B x 3: 9 x+6 y=12 & \text { (mult by } 3 \text { to get } 6 \text { in front of } y \text {) } \\
13 x \quad=26 & \text { (adding both equations together) } \\
\Rightarrow \quad x \quad=\frac{26}{13} & \text { (dividing both sides by 13) } \\
\Rightarrow \quad x \quad=2 &
\end{aligned}
$$

Putting x into A :

$$
\begin{array}{lrl}
A: & 2 x-3 y=7 \\
\Rightarrow & 2(2)-3 y=7 \\
\Rightarrow & 4 & -3 y=7 \\
\Rightarrow & -3 y=7-4 \\
\Rightarrow & -3 y=3 & \\
\Rightarrow & y=\frac{3}{-3} & \text { (dividing both sides by }-3) \\
\Rightarrow & y=-1 &
\end{array}
$$

6) Inequalities:

a) Solving Inequalities:

Notes:

$\rightarrow \quad$ Need to know the types of numbers (See Arithmetic 1b)
> Same rules as solving linear equations (See Algebra 4a)
> One difference: if you have to multiply/divide both sides of an inequality by a NEGATIVE number, we must CHANGE THE DIRECTION of the inequality.

Example 1: Graph the solution to $3-4 x<11, x \in Z$.

$$
\begin{array}{ll}
3-4 x<11 & \\
-4 x<11-3 & \\
-4 x<8 & \\
\frac{-4 x}{-4}<\frac{8}{-4} & \text { (dividing both sides by -4) } \\
x>-2 & \text { (Note sign change because } \\
\text { divided by -4) } &
\end{array}
$$

For the number line, we're looking for all the Integers that are bigger than -2.

Example 2: Graph the solution to $3(x-2) \leq-3, x \in R$.

$$
\begin{array}{ll}
\begin{array}{ll}
3(x-2) \leq-3 & \\
3 x-6 \leq-3 & \\
3 x \quad \leq-3+6 & \text { (adding 6 to both sides) } \\
3 x & \leq 3 \\
\frac{3 x}{3} & \leq \frac{3}{3} \\
\Rightarrow x & \text { (dividing both sides by 3) }
\end{array} .
\end{array}
$$

For the number line, we're looking for all the Real numbers that are smaller than or equal to 1.

