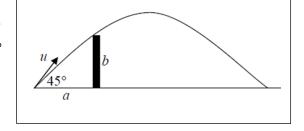
Level 1:

- Q1. A particle is projected with an initial velocity of $10\vec{i} + 15\vec{j} \, m/s$.
 - (i) Find the two times when the particle is at a height of 8 m.
 - (ii) Find the speed and direction of its velocity after 3 seconds.
- Q2. A particle is projected with an initial velocity of $16 \, m/s$ at an angle of 60° to the horizontal.
 - (i) Write its initial velocity in terms of \vec{i} and \vec{j} .
 - (ii) Find the maximum height reached by the particle.
 - (iii) Find the particle's range.
 - (iv) Calculate the speed of the particle when it lands.
- Q3. A stone is projected with a speed of $18\sqrt{2} \, m/s$ at an angle of 45° to the horizontal from the top of a cliff of height $120 \, m$.
 - (i) Find the maximum height above the sea the stone reaches.
 - (ii) Find the distance from the base of the cliff to where it enters the sea.
- Q4. A plane is flying horizontally with a speed of $200 \, m/s$. As it flies at a height of $120 \, m$ over a cannon, a shell is fired at a speed of $250 \, m/s$.
 - (i) Find the angle of projection required in order for the shell to hit the plane.
 - (ii) Find the time it takes for the shell to hit the plane.


Level 2:

- Q5. (i) Show that the maximum height reached by a projectile with an initial speed of u and an angle of projection of A is given by $\frac{u^2 \sin^2 A}{2a}$.
 - (ii) Show that the range reached by a projectile with an initial speed of u and an angle of projection of A is given by $\frac{2u^2\cos A\sin A}{g}$.
 - (iii) Show that the maximum range reached by a projectile with an initial speed of u and an angle of projection of A is given by $\frac{u^2}{a}$.
- Q6. Find the angle of projection for a particle which has its horizontal range equal to double its maximum height.
- Q7. Find the angle of projection for a particle which has its horizontal range equal to four times its maximum height.
- Q8. A particle is projected with a speed of 98 m/s on the horizontal plane. Find the two possible angles of projection, if the range of the particle is 280 m.
- Q9. A gaelic football is kicked with an initial speed of $28 \, m/s$ so that it clears the crossbar on a goalpost. If the crossbar is $2.8 \, m$ high and the posts are $45 \, m$ away from the kicker, find two possible angles of projection of the ball.

Level 3:

- Q10. A particle is projected inside a tunnel which is 10~m high with an initial speed of u. Show that the maximum range inside the tunnel is given by $\frac{28\sqrt{u^2-196}}{g}$.
- Q11. A particle is projected with a speed of $49 \, m/s$ at an angle A to the horizontal. The particle strikes the plane again after 8 seconds. At a time t_1 during the motion, its direction of motion was perpendicular to its original direction of motion. Find t_1 .

- Q12. A ball is projected from a point on the ground at a distance a from the foot of a vertical wall o height b, the velocity of projection being u at an angle 45° to the horizontal.
 - (i) If the ball just clears the wall, prove that the greatest height reached is $\frac{a^2}{4(a-b)}$.

(ii) Find, in terms of a and b, an expression for the horizontal range of the ball.

Answers:

Q1. (i) 0.69 s, 2.37 s (ii) 17.53 m/s, E55.22°S							
Q2. (i) $8\vec{i} + 8\sqrt{3}\vec{j}$ (ii) $\frac{96}{g}m$ or 9.8 m (iii) $\frac{128\sqrt{3}}{g}$ or 22.62 m (iv) 16 m/s Q3. (i) 136.53 m (ii) 128.16 m							
Q4. (i) 36.87° (ii) 0.82 s	Q6 . 63.4°	<u>Q7.</u> 45°	Q8 . 8.3°, 81	l.7°	Q9 . 21.07°, 72.49°		
Q11. 6.25 s	$\underline{Q12.}\;(ii)\frac{a^2}{a-b}$						

Past Exam Questions:

2009 Q3(a)

3. (a) A straight vertical cliff is 200 m high.

A particle is projected from the top of the cliff.

The speed of projection is $14\sqrt{10}$ m/s at an angle α to the horizontal.

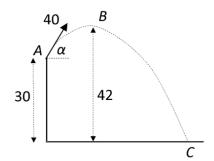
The particle strikes the level ground at a distance of 200 m from the foot of the cliff.

- (i) Find, in terms of α , the time taken for the particle to hit the ground.
- (ii) Show that the two possible directions of projection are at right angles to each other.

2011 Q3(a)

- 3. (a) A particle is projected from a point P on horizontal ground. The speed of projection is 35 m s⁻¹ at an angle $\tan^{-1} 2$ to the horizontal. The particle strikes a target whose position vector relative to P is $x\vec{i} + 50\vec{j}$.
 - Find (i) the value of x
 - (ii) a second angle of projection so that the particle strikes the target.

2012 Q3(a)


- 3. (a) A particle is projected with a speed of 98 m s⁻¹ at an angle α to the horizontal. The range of the particle is 940.8 m. Find
 - (i) the two values of α
 - (ii) the difference between the two times of flight.

2017 Q3(a)

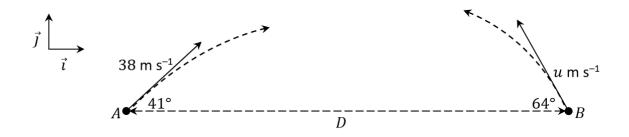
- 3. (a) A particle is projected with speed $\sqrt{\frac{9gh}{2}}$ from a point *P* on the top of a cliff of height *h*. It strikes the ground a horizontal distance 3h from *P*.
 - (i) Find the two possible angles of projection.
 - (ii) For each angle of projection find, in terms of h, the time it takes the particle to reach P.

2019 Q3(a)

3. (a) A particle is projected with speed 40 m s⁻¹ from a point A on the top of a vertical cliff of height 30 m. The maximum height reached by the particle is 42 m above the horizontal ground, at point B. It strikes the ground at C.

Find

- (i) the value of α , the angle of projection
- (ii) the horizontal range of the particle
- (iii) the speed of the particle as it hits the ground at C.


2023 Q8

Question 8

Two balls, P and Q, are projected into the air from points A and B, which are a distance D apart along the horizontal \vec{i} axis. The motion of the balls may be modelled as projectile motion in a vertical plane, ignoring the effects of air resistance.

P is projected from point A at time t = 0 s with initial velocity 38 m s⁻¹ at 41° to AB.

Q is projected from point B at time t = 1 s with initial velocity $u \text{ m s}^{-1}$ at 64° to BA.

P and Q collide in mid-air when t = 3 s.

- (i) Show that $u = 28 \text{ m s}^{-1}$ to the nearest whole number.
- (ii) Calculate D.
- (iii) In terms of \vec{i} and \vec{j} , calculate $\overrightarrow{v_P}$, the velocity of P, and $\overrightarrow{v_Q}$, the velocity of Q, when the balls collide, i.e. when t=3 s.
- (iv) Calculate the dot product of $\overrightarrow{v_P}$ and $\overrightarrow{v_Q}$ when t=3 s.
- (v) Hence or otherwise calculate the acute angle between $\overrightarrow{v_P}$ and $\overrightarrow{v_Q}$ when t=3 s.

Past Exam Questions:

$14\sqrt{10\cos\alpha}$		2012 : (i) 36.87°, 53.13° (ii) 4 <i>s</i>			
2017: (i) 0°, 71.6° (ii) $\sqrt{\frac{2h}{g}}$, $\sqrt{\frac{20h}{g}}$ or 4.48 $\sqrt{\frac{h}{g}}$ 2019: (i) 22.5° (ii) 166 m (iii) 46.8 m/s					
2023 : (ii) $110.53 m$ (iii) $\vec{p} = 28.68\vec{i} - 4.47\vec{j}$, $\vec{Q} = -12.32\vec{i} + 5.6\vec{j}$ (iv) -378.3696 (v) 15.57°					