Q1. The diameter of a wheel of a bicycle is 40 cm . Calculate the number of rotations of this wheel as the bicycle travels a distance of 100 metres. Give your answer as a whole number. Ans: 80
Q5. The figure shows a circular piece of sheet metal of diameter 40 cm . The sheet contains 12 equally spaced bolt holes. Determine the straight-line distance between the centres of two consecutive bolt holes. Ans: 9.06 cm

Q2. Prove that $1-\frac{\sin ^{2} \theta}{1-\cos \theta}=-\cos \theta$.
Q3. Show that $\sin 2 A+\tan 2 A=\frac{\sin 2 A \tan 2 A}{\tan A}$.
Q4. Write $\tan ^{2} 30+\sin ^{2} 60$ in surd form. Ans: $\frac{13}{12}$
Q6. A passenger in an airplane flying at an altitude of 37000 ft sees two towns directly to the west of the airplane. The angles of depression to the towns are 32° and 76°. How far apart are the towns?
Ans: 49987ft

Q7. Solve the equation $\sin 2 x=-\frac{\sqrt{3}}{2}$, where x is in radians and $x \in R$. Ans: $x=\frac{2 \pi}{3}+n \pi, \frac{5 \pi}{6}+n \pi$
Q8. Find all the solutions of the equation $\cos 2 A=0.3420$, correct to the neares \dagger degree.
Ans: $A=35^{\circ}+n\left(180^{\circ}\right)$, or
$A=145^{\circ}+n\left(180^{\circ}\right), n \in Z$
Q10. If $\sin A=\frac{2 t}{t^{2}+1}$, where $t>1$, show that $\cos A=\frac{t^{2}-1}{t^{2}+1}$.

Q12. A 100 ft vertical tower is to be erected on the side of a hill that makes a 6° angle with the horizontal. Find the length of each of the two guide wires that will be anchored 75 ft uphill and downhill from the base of the tower.
Ans: $131.12 \mathrm{ft}, 118.56 \mathrm{ft} \dagger$

Q14. How many degrees does the minute hand of a clock gain on the hour hand in a minute? Hence, find the time, to the nearest second, between 1 o'clock and 2 o'clock when the two hands overlap.
Ans: $5.5^{\circ}, 1: 05: 27$

Q9. The course for a boat race starts at point A and proceeds in the direction $\mathrm{S} 52^{\circ} \mathrm{W}$ to point B , then in the direction $S 40^{\circ} E$ to point C and finally back to A. Point C lies 8 km directly south of point A. Approximate the total distance of the race course. Ans: 19.45 km
Q11. To approximate the length of a marsh, a surveyor walks 380 m from point A to point B. Then the surveyor turns 80° and walks 240 m to point C. Approximate the length $|A C|$. Ans: 483.4 m

Q13. ced is a triangle on horizontal ground. abcd is a vertical rectangular wall. $|b c|=25 \mathrm{~cm},|<a b e|=$ $43^{\circ}, \mid<$ aeb $\mid=75^{\circ}$ and k bec $\mid=14^{\circ}$. Find $\mid<$ aed \mid correct to the nearest degree.

Ans: 18°

Q15. In the shaded sector in the diagram, the arc is 6 cm long, and the angle of the sector is 0.75 radians. Find the area of the sector. Ans: $24 \mathrm{~cm}^{2}$

Q17. A rectangle $A B C D$ is inscribed in a semi-circle of centre o and radius r.

(i) Given that $|<D C A|=\theta$, show that the perimeter of $A B C D$ is $2 r(\sin \theta+2 \cos \theta)$.
(ii) Show that the area of the shaded region is $\frac{r^{2}}{2}(\pi-2 \sin 2 \theta)$.
Q19. The average height of water in a harbour varies with the tide and is given by a sinusoidal curve i.e. a sine curve or a cosine curve. If $\times m$ represents the height t hours after a maximum height of 12 m , then the next lowest height of 7 m occurs 6 hours later. Express x as a function of t, where the angle is in degrees.
Ans: $x=\frac{19}{2}+\frac{5}{2} \cos 30 t$

Q16. A voltmeter's pointer is 6 cm in length. Find, in radians, the angle through which it rotates when it moves 2.5 cm on the scale. Ans: $\frac{5}{12}$

Q18. The height, x, of a sound wave at time t, in radians, is given by $x=6 \sin 8 t$.
(i) Find an expression for all the times at which $x=0$.
(ii) Find the first five times at which $x=-3$.

Ans: (i) $t=\frac{n \pi}{4}$ or $t=\frac{\pi}{8}+\frac{n \pi}{4}, n \in Z$
(ii) $\frac{7 \pi}{48}, \frac{11 \pi}{48}, \frac{19 \pi}{48}, \frac{23 \pi}{48}, \frac{31 \pi}{48}$

Q20. A triangle has sides of length $a, a+1, a+2$, where $a>0$. If A is the angle opposite the side of length a, show that $\cos A=\frac{a+5}{2 a+4}$.

