Topic 4: Algebra

1) The Basics:

b) Multiplying Expressions:
Notes:
when multiplying we follow the order Signs, Numbers,
Letters
> When multiplying the letters together we must remember
the first law of indices $a^m \times a^n = a^{m+n}$ i.e. Add the Powers
Example 1: Multiplying Terms
4a ² x 2a ⁵ (Multiply signs(+).(+) = +)
=8a ⁷ (Multiply Numbers & Add Powers)
Example 2: Removing Brackets
2(g + 4)
= 2g + 8
Example 3: Removing Brackets
(2x - 3)(x + 2) ("Split and Repeat")
= 2x(x + 2) - 3(x + 2)
$= 2x^2 + 4x - 3x - 6$
$= 2x^2 + x - 6$

2) Algebraic Fractions:

3) Factorising and Manipulation of Formulae:

<u>a) Factorising:</u>		b) Manipulation of I	Formulae:
1. Taking out the HCF (taking ou	it what's common)	Steps:	
e.g.s		1) Get rid of any bra	ackets, fractions or square roots.
i) $2x - 10$	ii) $3x^2 - 18x$	2) Bring all terms wi	th the letter you want to the LHS and move
= 2(x-5)	= 3x(x-6)	everything else to the	he RHS.
2. Grouping (always has 4 terms)		3) Factorise out the	letter you want (if necessary).
e.g.s		4) Divide both sides	to leave the letter you want on the LHS.
i) $ax + ay + bx + by$	ii) $3p - 3q - pk + kq$		
= a(x+y) + b(x+y)	= 3(p-q) - k(p-q)	Example: Write r, in	n terms of p and q.
= (x+y)(a+b)	= (p-q)(3-k)	$\sqrt{\frac{p}{r-q}} = p$	
3. Quadratic (always has 3 terms	x^{2}, x, a)	$\sqrt{r-q}$	
e.g.s		$\Rightarrow \left(\sqrt{\frac{p}{r-q}}\right)^2 = (p)^2$	(Squaring both sides to get rid of $\sqrt{}$)
i) $x^2 + 5x + 6$	ii) $x^2 - 3x - 18$	(N· 4)	
= (x+3)(x+2)	= (x-6)(x+3)	$\Rightarrow \frac{p}{r-q} = p^2$	
4. Difference of 2 Squares (always)	ays 2 terms with a '-' between)	r-q	
Note: Watch for square numbers: 1, 4, 9, 16, 25, 36, 49, 64, 81		$\Rightarrow p = p^2(r-q)$	(Multiplying both sides by (r - q))
e.g.s		$\Rightarrow p = p^2 r - p^2 q$	
i) $x^2 - 9y^2$	ii) $16a^2 - 25b^2$	$\Rightarrow -p^2r = -p - p^2q$	(Bringing term with r to LHS)
$(x)^{2} - (3y)^{2}$	$= (4a)^2 - (5b)^2$	$\Rightarrow p^2 r = p + p^2 q$	(Changing all the signs)
= (x - 3y)(x + 3y)	= (4a - 5b)(4a + 5b)	$\Rightarrow r = \frac{p + p^2 q}{p^2}$	(dividing both sides by p^2)

a) Solving Linear Equations: (x only)	b) Solving Linear Equations With Fractions:
<u>Steps:</u>	<u>Tip:</u>
1. Remove all brackets and any fractions	"Kill" all fractions first by multiplying all terms by something that
2. Bring all terms with an 'x' to one side and numbers to the	ALL denominators divide into.
other side	
3. Tidy up both sides by putting together 'like terms'.	Example: Solve $\frac{2x-3}{4} + \frac{x+6}{5} = \frac{3}{2}$
 Solve the simple equation remaining. 	In this case 20 will kill the fractions, so multiply across by 20:
Example: $2(x-3) = 4(x+1)$	2x - 3 $x + 6$ 3
2x-6 = 4x + 4	$20(\frac{2x-3}{\cancel{M}}) + 20(\frac{x+6}{\cancel{M}}) = 20(\frac{3}{\cancel{M}})$
2x - 4x = 4 + 6	5(2x - 3) + 4(x + 6) = 10(3)
-2x = 10	10x - 15 + 4x + 24 = 30
$x = \frac{10}{-2}$	10x + 4x = 30 + 15 - 24
-2	14x = 21
= x = -5	$\Rightarrow x = \frac{21}{14} = \frac{3}{2}$
	$\Rightarrow x = \frac{1}{14} = \frac{1}{2}$
c) Solving Quadratic Eqns by factorising: (Equations with an	d) Solving Quadratic Eqns using the "-b Formula":
<u>x²</u>)	Note: This method can be used for ALL guadratic equations.
Steps:	If $ax^2 + bx + c = 0$ is a quadratic equation, then the roots of the
1. Bring all terms to the left-hand side (LHS) and leave '0'	equation are given by:
on the RHS	
2. Factorise the LHS (See section on Factorising in previous	$-h + \sqrt{h^2 - 4ac}$ See Tables
tab)	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ See Tables pg 20
3. If LHS can't be factorised the 'Quadratic Formula'	
needs to be used (See Example 3 on the right)	
4. Let each factor be = 0	
5. Solve the two simple equations to find the two answers.	Example 3: Solve $x^2 - 2x - 5 = 0$.
3. Solve me two simple equations to find the two diswers.	In this case: a = 1, b = -2 and c = -5
Example 1: $x^2 - 3x - 18 = 0$	
(x-6)(x+3) = 0	$-b + \sqrt{b^2 - 4ac}$
x - 6 = 0 or $x + 3 = 0$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
x = 0 = 0 or $x = 3 = 0$	$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-5)}}{2(1)}$
-2 x = 0 0 x = -3	$x = \frac{1}{2(1)}$
Example 2: $4x^2 - 25 = 0$	$\Rightarrow x = \frac{2 \pm \sqrt{24}}{2}$
(2x - 5)(2x + 5) = 0	-
2x - 5 = 0 or $2x + 5 = 0$	$\Rightarrow x = 3.45$ or $x = -1.45$
=> 2x = 5 or $2x = -5$	
$\Rightarrow x = \frac{5}{2}$ or $x = \frac{-5}{2}$	

f) Forming Quadratic Equation from the roots: e) Quadratic Eqns with fractions: **Example:** Solve $\frac{2}{x+1} - \frac{3}{x-2} = \frac{5}{2}$ <u>Method 1</u>: Steps: 1. Let x = both of the roots. Method 1: (Multiply across by common denominator) 2. Create two factors that are = 0. In this case the common denominator would be 2(x + 1)(x - 2): 3. Multiply the two factors together using "split and repeat". $\frac{2(x+1)(x-2)\frac{2}{x+1}-2(x+1)(x-2)\frac{3}{x+2}}{2(x-2)(2)-2(x+1)(3)}=\frac{2(x+1)(x-2)\frac{5}{2}}{2(x+1)(x-2)}$ **Example:** Find the guadratic equation with roots -1 and 3. $4x - 8 - 6x - 6 = 5x^2 - 5x - 10$ x = -1or x = 3 $-5x^{2} + 3x - 4 = 0$ x + 1 = 0 or x - 3 = 0 $5x^2 - 3x + 4 = 0$and solve this as before. (x+1)(x-3)=0Method 2: (Tidy up both sides into single fractions and cross x(x-3) + 1(x-3) = 0multiply) (See Section 2 - Example 2) $x^2 - 3x + x - 3 = 0$ $\frac{2}{x+1} - \frac{3}{x-2} = \frac{5}{2}$ Need to know to $x^2 - 2x - 3 = 0$ use this method. Method 2: Use the formula $\frac{2(x-2) - 3(x+1)}{(x+1)(x-2)} = \frac{5}{2}$ $x^2 - (sum of roots)x + (product of roots) = 0$ -x - 7 $\frac{1}{(x+1)(x-2)} = \frac{3}{2}$ 2(-x-7) = 5(x+1)(x-2)Example: Find the guadratic equation with roots -1 and 3. $-2x - 14 = 5(x^2 - x - 2)$ $-2x - 14 = 5x^2 - 5x - 10$ $x^{2} - (sum of roots)x + (product of roots) = 0$ $x^2 - (-1 + 3)x + ((-1)(3)) = 0$ $5x^2 - 3x + 4 = 0$ etc. $x^2 - 2x - 3 = 0$

5) Simultaneous Equations:

b) One Linear, One Quadratic: a) Two Linear Equations: Steps: Steps: 1. Choose a variable to eliminate e.g. 'y' 1. Use the linear equation to get one variable on its own. 2. Multiply one or both equations to make no. in front of y the 2. Sub this into the quadratic equation. 3. Multiply out and solve the resulting quadratic equation. same 3. Multiply the 2nd equation by -1, if necessary, to make signs in 4. Sub your two values back into the expression from step 1. front of 'y' different. **Example:** Solve the equations x - y = 2 and $2x^2 + y^2 = 36$. 4. Add the two equations to eliminate 'y' and solve for 'x'. 5. Put x back into one of the equations to find y. L: x - y = 2 *C*: $2x^2 + y^2 = 36$ **Example:** Solve the equations below: Step 1: Use the linear equation to get one variable on its own: A: 2x - 3y = 7L: x - y = 2*B*: 3x + 2y = 4=> x = y + 2 💥 Step 2: Substitute our expression for x into equation C: Ax2: 4x - 6y = 14(mult by 2 to get 6 in front of y) C: $2x^2 + y^2 = 36$ Bx3: 9x + 6y = 12(mult by 3 to get 6 in front of y) $\Rightarrow 2(y + 2)^2 + y^2 = 36$ Step 3: Multiply out and solve the resulting quadratic equation: 13x= 26(adding both equations together) $\Rightarrow 2(y^2 + 4y + 4) + y^2 = 36$ $=\frac{26}{13}$ (dividing both sides by 13) x $= 2y^{2} + 8y + 8 + y^{2} - 36 = 0$ $= 2^{1}$ ⇒ x $\Rightarrow 3y^2 + 8y - 28 = 0$ (3y + 14)(y - 2) = 0 Putting x into A: => 3y + 14 = 0 OR y - 2 = 0 A: 2x - 3y = 73y = -14 OR y = 2 -2.67, -4.67) $\Rightarrow 2(2) - 3y = 7$ $y = \frac{-14}{2}$ $\Rightarrow 4 - 3y = 7$ -3y = 7 - 4⇒ Step 4: Sub your two values back into the expression from step -3y = 31: $y = \frac{3}{-3}$ (dividing both sides by -3) x=y+2 💥 v = -1When y = 2 When y = $x = \frac{-14}{-14} + 2$ x = 2 + 2 $x = \frac{-3}{-8}$ x = 4 So, our two solutions are: (4, 2) and $\left(\frac{-8}{3}, \frac{-14}{3}\right)$.

6) Inequalities:

7) Word Problems:

<u>Tips:</u>	
1. Read the question a couple of times before attempting it.	
2. Underline any Mathematical key words e.g. sum, product, total.	
3. Let 'x' be what you are looking for, if there is one unknown. Use	'x' and 'y' for two unknowns.
4. Form an equation.	
5. Solve the equation.	
6. If you are unable to form an equation, try using "trial and impro	vement" to solve the problem. You need to show all trials and
workings.	
7. Check your answer(s).	
Example 1: Find two consecutive natural numbers whose sum is	Example 2: A shop sells 50 sofas in a week. A leather sofa
83.	costs €1000 and a fabric sofa costs €750. The shop sells
 Keywords: consecutive, natural and sum 	€42,500 worth of sofas. How many of each type are sold?
• Let $x = 1^{st}$ number, so that means $x + 1 = 2^{nd}$ number	
 Their sum is 83 ('sum' means they add to 83) 	• Let x = no. of leather sofas and y = no. of fabric sofas
=> x + x + 1 = 83 (equation formed)	 Total number of sofas = 50
=> 2x + 1 = 83	=> x + y = 50 (first equation formed)
=> 2x = 83 - 1	 Total money = €42,500
=> 2x = 82	=> 1000x + 750y = 42500 (second equation formed)
=> $x = 41$ (dividing both sides by 2)	• Can solve the 2 simultaneous equations now to find x and y.
=> second number is x + 1 = 42	(See Section 5a)