Topic 7: Functions/Graphs

1) The Basics:

a) Terminology:	c) Evaluating Functions:
• Domain = the values that are put into a function.	Example: If $f(x) = 2x^2 + 3$, find $f(3)$ and $f(-1)$.
• Range = the values that come out of a function.	$f(3) = 2(3)^2 + 3 = 21$
• Codomain = the values that could come out of a function.	$f(-1) = 2(-1)^2 + 3 = 5$
b) Notation:	d) Finding Inputs of Functions:
The different ways functions are written are:	Example: If $f(x) = 5x - 3$, find the value of x for which $f(x) = 12$.
• $f(x) = x^2 + 3x$	f(x) = 12
• $f:x \rightarrow x^2 + 3x$	=> 5x - 3 = 12
• $y = x^2 + 3x$	=> 5x = 15
	=> x = 3

2) Types of Graphs:

3) Drawing/Interpreting Graphs:

5) Injective/Surjective/Bijective Functions:

6) Composite Functions:

Notes:		ii) gf(3) means we have to get f(3) first:
≻	Two or more functions together = composite functions.	f(3) = 2(3) + 1
≻	Symbol: 'o'	= 6 + 1 = 7
\triangleright	Function written second must be used first.	- We now have to put 7 into the g function:
	E.g. $f(g(x))$ means you use $g(x)$ first, and then put output into	$g(7) = (7)^2 + 3$
	f	= 49 + 3 = 52
≻	Composition written as $f \circ g(x)$ or $(f \circ g)(x)$ or $f(g(x))$ or $fg(x)$	Example 2: Decompose $h(t) = (2t - 3)^2$ into two separate
\triangleright	Composition is not commutative i.e. f o $g(x) \neq g$ o $f(x)$	functions.
Example 1: $f(x) = 2x + 1$ and $g(x) = x^2 + 3$ are two functions.		- In the function h, the input has to first be multiplied by 2, and
i)	Find the value of f o g(3).	then 3 has to be taken from it, so we could define a function p(t)
ii)	Find the value of gf(3)	= 2t - 3 to represent that.
i) f	o g(3) means we have to get g(3) first:	- Output has to be squared now, so define a function q(t) = t ² to
	g(3) = (3) ² + 3 = 12	do that.
- W	'e now have to put 12 into the f function:	- Now, put the p and q functions together (take care with order).
	f(12) = 2(12) + 1 = 24 + 1 = 25	- We want to do p first, so we write: h = q o p(t)

7) Completed square form:

8) Inverse Functions:

 $\Rightarrow 8y = 4 - 3x$ $\Rightarrow 3x = 4 - 8y$

 $\Rightarrow x = \frac{4 - 8y}{2}$ 3 $\Rightarrow f^{-1}(x) = \frac{4-8x}{2}, x \in \mathbb{R}$

a) Inverse Functions: ii) To do this part we try filling in a value to f and then to g and Notes: see what happens: $f(4) = \frac{4 - 3(4)}{8} = \frac{4 - 12}{8} = \frac{-8}{8} = -1$ $g(-1) = \frac{4 - 8(-1)}{3} = \frac{4 + 8}{3} = \frac{12}{3} = 4$ When a number passes two different functions, and we get original number back, then functions are said to be inverses. If $f \circ g(x) = g \circ f(x) = x$, then f and g are inverses. => we got back original value we put in => f and g are inverses \triangleright Two functions that would be inverses of each other would b) Graphs of Inverse Functions: be f(x) = 2x + 1 and $g(x) = \frac{x-1}{2}$ because: Notes: f(1) = 2(1) + 1 = 3 and then $g(3) = \frac{3-1}{2} = 1$ Red graph below = graph of f, blue graph = graph of f^{-1} . \geq Notation f^{-1} to symbolise the inverse of the function f. \geq ≻ If (x, y) is on a graph of f, then (y, x) will be on f⁻¹. Only bijective functions have inverses. f and f⁻¹, are images of each other under reflection (axial ≻ Steps to find inverse functions: symmetry) in the line x = y (shown in green below). 1. Write the function in the form y in terms of x. $f^{-1}(x)$ 2. Rearrange the function to write x in terms of y. 3. Swap the x and y. **Example 1:** Given a function $f(x) = \frac{4-3x}{2}, x \in R$: i) Find the inverse of the function, f^{-1} . ii) Verify that the inverse is, in fact, the inverse. $y = \frac{4 - 3x}{8}$

x = y

f(x)