1) Arithmetic Sequences/Series:

a) Linear Sequences:

$>$ A list of numbers where the difference between each term is the same every time.
E.g. 3, 8, 13, 18 ,
\rightarrow The general term of a sequence $\left(T_{n}\right)$ is a formula that can be used to find the value of any term of the sequence.
\rightarrow We can also find it by observing the sequence and figuring out the pattern.
Example: Find the general term for the sequence $3,8,13$,
18.....
Common Difference $=+5$

Term Number	Pattern	Term Value
1	$5(1)-2$	3
2	$5(2)-2$	8
3	$5(3)-2$	13
4	$5(4)-2$	18
n	$5(n)-2$	$5 n-2$

$$
\Rightarrow \text { General Term: } T_{n}=5 n-2
$$

- Once we have the General Term, we can find ANY term in the sequence.
E.g. What is 50th term?

$$
T_{50}=5(50)-2
$$

$$
=248
$$

- The general term also allows us to work back and find what term number a value would be.
E.g. What term would 458 be?

$$
\begin{aligned}
& T_{n}=458 \\
& 5 n-2=458 \\
& 5 n \quad=458+2 \\
& 5 n \quad=460 \\
& n \quad=92 \quad \text { g 92nd term }
\end{aligned}
$$

b) Quadratic Sequences:

- A sequence where the second difference is the same every time.
E.g. $4,7,12,19,28$....... (see below)

Steps to find General Term:

1. Let General Term $=T_{n}=a n^{2}+b n+c$
2. Find $2^{\text {nd }}$ difference and let $=2 a$ a...solve for a.
3. Use any 2 terms to form two equations in b and c.

Example: Find the General Term of the sequence 4, 7, 12, 19, 28

Step 1: Let the General Term $T_{n}=a n^{2}+b n+c$.
Step 2: The second difference represented $2 a$, so halving the second difference gave us a value for a......in the sequence above the second difference is +2 , so ' a ' would be +1 .
Step 3: Use two of the terms in the sequence to make two simultaneous equations, which we solve to find ' b ' and ' c '......
$T_{n}=a n^{2}+b n+c$

$$
\begin{array}{l|l}
\hline T_{2}=(2)^{2}+b(2)+c=7 & T_{3}=(3)^{2}+b(3)+c=12 \\
\Rightarrow 4+2 b+c=7 & \Rightarrow 9+3 b+c=12 \\
\Rightarrow 2 b+c=3 \ldots . . \text { Eqn 1 } & \Rightarrow 3 b+c=3 \ldots \ldots \text { Eqn 2 }
\end{array}
$$

Solving Equations 1 and 2 gives $b=0$ and $c=3$
$\Rightarrow T_{n}=n^{2}+(0) n+3$
$\Rightarrow T_{n}=n^{2}+3$

c) Exponential Sequences:

- A sequence where each term is found by multiplying the previous term by the same number every time.
E.g. $2,6,18,54,162$.........

