1) The Basics:

a) Terminology:

- Numerical: data is numbers e.g.s shoe size, height, rainfall, number of kids in a family
- Categorical: data is text e.g.s favourite phone brand, tv programme, hair colour
- Discrete: numerical data that can only take on set values (generally whole numbers)
e.g.s shoe size, number of kids in family
- Continuous: numerical data that can take on a range of values (can be decimals) e.g.s rainfall in mm , weight, height
- Ordinal: categorical data that can be put into order e.g. grades in an exam $A, B, C \ldots$.
- Nominal: categorical data that cannot be put into order e.g. phone brand
- Primary Data: data collected by person who's going to use it
- Secondary Data: data that's already available e.g. internet, magazines
- The population is the entire group being studied.
- A sample is a group that is selected from the population.
- A census is a survey of the whole population.
- A sampling frame is a list of all those within a population who can be sampled.
- An outlier is an extreme value that is not typical of other values in the data set.
- Bias can mean something which sways a respondent in a particular way or another, in a survey/questionnaire. The term bias can also be used if a sample doesn't reflect the population. E.g. selecting people coming out of Lidl and asking them their opinion on shopping in non-Irish owned retailers.

b) Collecting Data:

Notes: When selecting people to survey it is important that:
$>$ the sample is selected randomly to avoid bias
> the sample represent the population
> the sample is sufficiently large

Methods of Collecting Data:

- Phone Interview:

Advs: questions can be explained can select sample from entire population
Disadvs: expensive compared to post or online

- Online Questionnaire:

Advs: cheap, anonymous so answers are more honest Disadvs: people may not respond, not representative of entire population...only those that are online

- Face to Face Interview:

Advs: questions can be explained
Disadvs: people might not answer honestly when asked in person, expensive and not random

- Postal Questionnaire:

Advs: not expensive
Disadvs: people don't always respond

- Observation:

Advs: low cost, easy to carry out
Disadvs: not suitable for some surveys, questions can't be explained

Tips for designing a questionnaire:

- Use clear \& simple language
- Begin with simple questions
- Accommodate all possible answers
- Contain no leading questions
- Be as brief as possible
- Be clear where answers should be recorded
- Avoid personal questions

2) Graphing Data from Junior Cert:

Notes:
> Individual bars must be labelled and axes labelled
> Must be an even scale on vertical (e.g. going up in 25 s in example above)
> Bars and axes drawn with ruler
> Can be used for categorical data

Note:

> Axes labelled and scaled evenly

3) Analysing Data:

a) Measures of Centre:

1. Mean: the sum of all the values divided by the number of values

$$
\begin{aligned}
& \text { e.g. Data: } 1,4,3,5,4,2,1 \\
& \text { Mean }=\frac{1+4+3+5+4+2+1}{7}=2.86
\end{aligned}
$$

- Only used with numerical data
- Advs: uses all the data
- Disadvs: affected by outliers

2. Mode: the value that appears the most often
e.g. Data: 2, 3, 1, 2, 5, 4, 2, 1, 2

Mode $=2$ (as it appears 4 times)

- Can be used for numerical but the only one that can be used for categorical data
- Advs: Not affected by outliers, can be used for any data
- Disadvs: There is not always a mode, does not use all the data

3. Median: the middle value (list must be in ascending order)
e.g. Data: 2, 1, 3, 3, 2, 5, 3, 2, 1

Rearrange in order first: $1,1,2,2,2,3,3,3,5$

$$
\Rightarrow \text { Median = } 2
$$

- Used only with numerical data
- Advs: Easy to calculate, not heavily affected by outliers
- Disadvs: Does not use all the data

b) Measures of Spread:

Note: For the following, the list of values should be in ascending order
Range: the difference between the max and the min value e.g. Data: $20,40,40,45,60 \Rightarrow$ Range $=60-20=40$

a) Frequency Distributions:

- A frequency distribution is a way of grouping together a large amount of data into a table. E.g.

No. in Household	2	3	4	5	6	7
No. of People	6	8	14	11	4	1

- Always remember what this table represents.....i.e. a full list of data: $2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4$.

c) Grouped Frequency Distributions:

- If the frequency distribution is a grouped frequency distribution, all the calculations shown above are the same except we use mid-interval values instead. E.g.

Age	$0-10$	$10-20$	$20-30$	$30-40$
Freq	2	5	4	8

- The mid-interval values for the age row are $5,15,25$ and 35.
- We now proceed to find mean, median and mode as in (b).
b) Mean, Mode and Median of a Frequency Distribution:

Mode: Can be read straight away from the table on the left \Rightarrow Mode $=4$ as it appears the most often (14 times)

Mean:

O We could add up all the values in the full list, shown below the table above, and then divide by 44

- Quicker way is to multiply the columns together from the table i.e. $(2 \times 6)+(3 \times 8)+(4 \times 14)+(5 \times 11)+(6 \times 4)+(7 \times 1)$
O We then divide this by 44 to get a mean of 4.04

Median:

O Count up how many values we have in total by adding the bottom row i.e. $6+8+14+11+4+1=44$

- This means that the median here will be the average of the $22 n d$ and 23 rd values.
- We can find the 22 nd and 23 rd values from the table above i.e. the first 14 values are ' 2 ' and ' 3 ' and the next 14 values are ' 4 ', which would include the 22 nd and 23 rd values \Rightarrow Median $=\frac{4+4}{2}=4$

