a) i) Discrete Numerical
ii) Nominal Categorical
iii) Continuous Numerical iv) Ordinal Categorical
b) i) Face-to-face Interview/Telephone Interview/Online Questionnaire e.t.c.
ii) Advs: can explain the questions/can explain the questions/people more honest when not face-to-face.......

Disadvs: people might not be honest face-to-face/can be expensive/questions can't be explained.......
c) Assign every student in the school a number. Draw the numbers out of a hat or use the random number generator on your calculator to pick the numbers randomly.

Q2.

Qu.
a)

$$
\text { i) } \begin{aligned}
M_{\text {ear }} & =\frac{2.4+3.1+2.5+3.1+1.8+3.4+2.7}{7} \\
& =\frac{19}{7} \\
& =2.71
\end{aligned}
$$

Median: Rerrange into order first

$$
\underset{M \text { Median }}{1.8,2.4,2.5,2.7), 3.1,3.1,3.4}
$$

$\begin{aligned} & \text { Mode: One that appears most } \\ &=3.1\end{aligned}$
ii) $M_{\text {ear }}=\frac{23+45+10+52+24+13+52+4}{8}$

$$
\begin{aligned}
& =223 / 8 \\
& =27.88
\end{aligned}
$$

Median: Rerrange into order first

$$
\begin{gathered}
4,10,13,(23,24,45,52,52 \\
M_{e}^{\downarrow} \text { dian }
\end{gathered}
$$

$$
M_{e d i a n}^{\downarrow} \Rightarrow M_{\text {dian }}=\frac{23+24}{2}=23.5
$$

Mode: One that appears most

$$
=52
$$

b) Mode or Median. There is a mode and neither are affected by the outlier 94.

Q4.
i)

Range	Mid Val Ines
$0-60$	$\frac{0+60}{2}=30$
$60-120$	$\frac{6+120}{2}=90$
$120-180$	$\frac{120+180}{2}=150$
$180-240$	$\frac{180+240}{240}=210$
$240-300$	$\frac{240+300}{2}=270$

$\Rightarrow M_{\text {ear }}=\frac{(30 \times 9)+(90 \times 12)+(150 \times 18)+(210 \times 15)+(270 \times 6)}{9+12+18+15+6}$

$$
=\frac{270+1080+2700+3150+1620}{60}
$$

$$
=\frac{8820}{60}=147 \mathrm{mins}
$$

ii) The 6 students in the last category (240-30 0mins) are definitely included as they spend over 4 hours studying. The maximum number of students that could have spent over 3.5 hours would be if ALL 15 students in the second last category spent longer than 3.5 hours. So to answer the question, the maximum number of students in total that could have spent over 3.5 hours is $15+6=21$ students.

Q5.
i) Range $=M_{a x}$ Value $-M_{\text {in }}$ Value

$$
\begin{aligned}
& =19-6 \\
& =13
\end{aligned}
$$

ii) Need to rearrange data into order first

$$
6,7,(8,9,9,9,11,12,(15), 16,19
$$

$$
\begin{aligned}
& \text { - } 11 \text { values } \\
& \text { Lower Quartile }=\text { Median of } 1^{s t} 5 \text { values } \\
&=\frac{5+1}{2}=3^{\text {rd }} \text { Value }=8 \\
& \text { Upper Quartile }=M_{\text {edian of Top }} 5 \text { values } \\
&=3^{\text {rd }} \text { value }=15 \\
& \Rightarrow I Q R=15-8=7
\end{aligned}
$$

Q6.

Need to calculate mean first:

$$
\text { Mean }=\frac{(0 \times 2)+(1 \times 4)+(2 \times 8)+(3 \times 4)+(4 \times 2)}{2+4+8+4+2}=2
$$

So, standard deviation will be:

$$
\sqrt{\frac{(0-2)^{2}+(1-2)^{2}+(2-2)^{2}+(3-2)^{2}+(4-2)^{2}}{2+4+8+4+2}}=1.09
$$

QT.

i) From diagram above, 68\% of the class lie between 62.5% and 67.5%.
ii) From the diagram above, 95% of the class will be 2 standard deviations either side of the mean
iii) From diagram above, the percentage of students 1 standard deviation above the mean will be half of 68%, which is $34 \% \Rightarrow$ no. of students in the class $=34 \%$ of $30=10.2=10$ students

Q8.

$$
\begin{aligned}
\hat{\rho} & =\frac{12}{50}=0.24 \\
E & =\frac{1}{\sqrt{n}} \\
& =\frac{1}{\sqrt{50}} \\
& =0.1414
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\Rightarrow & \hat{P}-E<p<\hat{P}+E \\
0.24-0.1414<p<0.24+0.1414 \\
& 0.0986<p<0.3814 \\
\hline 9.8 \%<p<38.1 \%
\end{array}\right] \text { Either answer is acceptable }
$$

Qq.

$$
\begin{aligned}
& \hat{p}=\frac{35}{120}=0.292 \\
& E=\frac{1}{\sqrt{n}} \\
&=\frac{1}{\sqrt{100}} \\
&=0.0913 \\
& \Rightarrow \hat{p}-E<\rho<\hat{p}+E \\
& 0.292-0.0913<p<0.292+0.0913 \\
& 0.2<p<0.38 \\
& 20 \%<p<38 \%
\end{aligned}
$$

Quo.

$$
\begin{aligned}
& H_{0}: \quad p=0.43 \\
& H_{1}: \quad p \neq 0.43 \\
& \hat{\rho}=\frac{202}{500}=0.404 \\
& E=\sqrt{500}=0.045 \\
& \Rightarrow \hat{p}-E<p<\hat{p}+E \\
& 0.404-0.045<p<0.404+0.045 \\
& 0.359<p<0.449
\end{aligned}
$$

\Rightarrow As 0.43 is in the range, we fail to reject H_{0}.

QI.

$$
\begin{aligned}
& H_{0}: p=0.82 \\
& H_{1}: p \neq 0.82 \\
& \hat{p}=\frac{778}{1000}=0.778 \\
& E=\frac{1}{\sqrt{1000}}=0.032 \\
& \Rightarrow \hat{p}-E<p<\hat{p}+E \\
& 0.778-0.032<p<0.778+0.032 \\
& 0.746<p<0.81
\end{aligned}
$$

As 0.82 is outside the range of ow 95% Confidence Interval, we reject H_{0} and accept H_{1}. So there is n't sufficient evidence to support the cain.

Past Exam Questions
Q12.
a)

1	8	8	9			
2	0	1	1	2		
3	2	3	3	4	4	5
4	1	2	3	3	9	
5	4	5	7	7	8	
6	3	3	4	5		
$K_{e y}:$	$1 / 9=19$ yrs of age					

b) $\%=\frac{14}{28} \times \frac{100}{1}=50 \%$

Qi.
a) Range $=\max -m \dot{n}$
ii) 2003
iii) 2002
i)

$$
\begin{aligned}
& =155-47 \\
& =108 \mathrm{~mm}
\end{aligned}
$$

b) 2006 : had the lowest rainfall and most amount of sur
c) $47,72,84,94,94,1101,133,134,149,155$

10 values \Rightarrow Median $=\frac{10+1}{2}=5.5^{\text {th }}$ Value

$$
\Rightarrow M_{\text {median }}=\frac{94+101}{2}=97.5 \mathrm{~mm}
$$

d) i)

$$
\begin{aligned}
M_{\text {ear }} & =\frac{169+124+180+173+173+239+159+168+228+205}{10} \\
& =\frac{1818}{10}=181.8 \mathrm{hrs}
\end{aligned}
$$

ii)

$$
\begin{aligned}
& 5 \% \text { Lower }=181.8-(5 \% \text { of } 181.8)=172.71 \\
& 5 \% \text { higher }=181.8+(5 \% \text { of } 181.8)=190.89 \\
& \Rightarrow 2003,2004,2005
\end{aligned}
$$

e) Using calculator: $\sigma=33.46=33.5$
f) i)

* New data added is X

Rainfall (mn)
ii) -0.6 : Correlation is negative and reasonably strong

Q14. a) i)

ii) From diagram above: 95%
iii) $\%$ between $85+115$ is 68%

$$
\Rightarrow 68 \% \text { of } 1200 \text { people }=816
$$

Q15. i)

$$
\begin{aligned}
E & =\frac{1}{\sqrt{n}} \\
& =\frac{1}{\sqrt{100}} \\
& =0.0289 \\
& =2.9 \% \\
& =3 \%
\end{aligned}
$$

ii) $\hat{\rho}=\frac{578}{100}=0.48$
$\Rightarrow 95 \%$ Conf idence Interval:

$$
\begin{gathered}
\hat{p}-E<\rho<\hat{\rho}+E \\
0.48-0.03<\rho<0.48+0.03 \\
0.45<\rho<0.51 \\
\hline 45 \%<\rho<51 \% \\
\hline
\end{gathered}
$$

or
iii)

$$
\begin{aligned}
& H_{0}: p=0.53 \\
& H_{1}: p \neq 0.53
\end{aligned}
$$

From part (ii) Confiders Interval $=0.45<p<0.51$
As 0.53 is not in the range of our confidence interval we reject H_{0} and accept H_{1}., so the claim they made was false.

