$>$ Chapter 10: Differential Equations

> Topic 48: Differential Equations

- Differential Equations are equations that contain a derivative $\left(\frac{d y}{d x}\right)$ in them.
E.g. $4 x \cdot \frac{d y}{d x}=5 y$
- A $1^{\text {st }}$ order differential equation has a $1^{\text {st }}$ derivative as its highest derivative, whereas a $2^{\text {nd }}$ order differential equation has a $2^{\text {nd }}$ derivative as its highest derivative.
- The differential equations on our course fall into 3 categories:
- Type 1: $1^{\text {st }}$ Order Differential Equations: General Solutions
- Type 2: $1^{\text {st }}$ Order Differential Equations with Definite Values
- Type 3: $2^{\text {nd }}$ Order Separable Differential Equations
- We will look at each of them in turn now.
- a) Type 1: $1^{\text {st }}$ Order Differential Equations: General Solutions
- Example 1: Find the general solution to the differential equation $\frac{d y}{d x}=5 x^{2} y$.

Solution:

- Firstly, we multiply both sides by dx to eliminate the fractions in the original equation:

$$
d y=5 x^{2} y \cdot d x
$$

- We now try and gather all the terms with a ' y ' to one side and the ' x ' terms to the other side:

$$
\left.\frac{1}{y} \cdot d y=5 x^{2} \cdot d x \quad \text { (dividing both sides by } y\right)
$$

- We now integrate both sides of the equation using the rules from the last topic.
- It's standard practice to simply put in one constant of integration, and it's normally put on the right hand side of the equation:

$$
\begin{array}{ll}
\int \frac{1}{y} \cdot d y=\int 5 x^{2} \cdot d x & \text { (integrating both sides) } \\
\Rightarrow \log _{e} y=\frac{5 x^{3}}{3}+c & \text { (using } \int \frac{1}{x} \cdot d x=\ln x+c \text { from tables) }
\end{array}
$$

- The final step is to get ' y ' on its own:

$$
\begin{aligned}
& \log _{e} y=\frac{5 x^{3}}{3}+c \\
& \Rightarrow y=e^{\frac{5 x^{3}}{3}+c} \quad \text { (taking } e \text { of both sides) }
\end{aligned}
$$

Classwork Questions: Pg 184 Ex 10A Qs 2/3/4/6/7/8 and then try Q9

- b) Type 2: $1^{\text {st }}$ Order Differential Equations with Definite Values
- Example 2: Find a function $y=f(x)$ such that $\frac{d y}{d x}=3 y^{2}$ and $y=2$ when $x=0$.

Solution:

- We start in a similar way to the last type and isolate all the y terms on one side, and the x terms on the other side:

$$
\begin{array}{ll}
\frac{d y}{d x}=3 y^{2} & \\
d y=3 y^{2} \cdot d x & \text { (multiplying both sides by } d x \text {) } \\
\frac{1}{y^{2}} d y=3 . d x & \text { (dividing both sides by } y^{2} \text {) }
\end{array}
$$

- We now integrate both sides again:

$$
\begin{array}{ll}
\int \frac{1}{y^{2}} d y=\int 3 \cdot d x & \\
\Rightarrow \int y^{-2} d y=\int 3 \cdot d x & \text { (rewriting } \frac{1}{y^{2}} \text { first as } y^{-2} \text {) } \\
\Rightarrow \frac{y^{-1}}{-1}=3 x+c & \\
\Rightarrow-\frac{1}{y}=3 x+c & \text { (rewriting } y^{-1} \text { as } \frac{1}{y} \text {) }
\end{array}
$$

- We can now apply the other information we were given to evaluate the constant of integration:

$$
\begin{aligned}
& \text { When } y=2, x=0 \text { : } \\
& \Rightarrow-\frac{1}{2}=3(0)+c \\
& \Rightarrow c=-\frac{1}{2}
\end{aligned}
$$

- We can now write down our solution with the value of 'c' filled in:

$$
-\frac{1}{y}=3 x-\frac{1}{2}
$$

- And finally, we rearrange to get ' y ' on its own:

$$
\begin{array}{ll}
-\frac{1}{y}=\frac{6 x-1}{2} & \text { (tidying up the RHS into a single fraction) } \\
\Rightarrow \frac{1}{y}=\frac{-6 x+1}{2} & \text { (multiply both sides by }-1 \text {) } \\
\Rightarrow \frac{y}{1}=\frac{2}{-6 x+1} & \text { (invert the fractions on both sides) } \\
\Rightarrow y=\frac{2}{(1-6 x)} &
\end{array}
$$

- Example 3: Given the differential equation $\frac{d y}{d x}=2 x y^{2}+32 x$ and given that $y=4$ when $x=$ 0 , find the value of y when $x=3$. Give your answer correct to 1 decimal place.

Solution:

- As before, we start by eliminating the fractions initially, and then isolating x^{\prime} s and $y^{\prime} s$:

$$
\begin{array}{ll}
d y=\left(2 x y^{2}+32 x\right) \cdot d x & \\
\Rightarrow d y=2 x\left(y^{2}+16\right) \cdot d x & \text { (factorising out } 2 x \text {) } \\
\Rightarrow \frac{1}{y^{2}+16} \cdot d y=2 x \cdot d x & \text { (dividing both sides by } y^{2}+16 \text {) }
\end{array}
$$

- Integrating both sides gives:

$$
\begin{array}{ll}
\int \frac{1}{y^{2}+16} \cdot d y=\int 2 x \cdot d x \\
\Rightarrow \int \frac{1}{y^{2}+4^{2}} \cdot d y=\int 2 x \cdot d x & \text { (rewriting } 16 \text { as } 4^{2} \text {) } \\
\Rightarrow \frac{1}{4} \tan ^{-1} \frac{y}{4}=\frac{2 x^{2}}{2}+c & \text { (using } \int \frac{1}{x^{2}+a^{2}} \cdot d x=\frac{1}{a} \tan ^{-1} \frac{x}{a} \text { from tables) } \\
\Rightarrow \frac{1}{4} \tan ^{-1} \frac{y}{4}=x^{2}+c & \text { (simplifying } \frac{2 x^{2}}{2} \text {) }
\end{array}
$$

- We now fill in the conditions we were given to find ' c ':

When $y=4, x=0$:
$\Rightarrow \frac{1}{4} \tan ^{-1} \frac{4}{4}=(0)^{2}+c$
$\Rightarrow c=\frac{1}{4} \tan ^{-1} \frac{4}{4}=\frac{1}{4}\left(\frac{\pi}{4}\right) \quad\left(\right.$ as $\tan ^{-1} \frac{4}{4}=\tan ^{-1} 1=45^{\circ}=\frac{\pi}{4}$ rads $)$
$\Rightarrow c=\frac{\pi}{16}$

- We can now write the solution above with ' c ' filled in:

$$
\Rightarrow \frac{1}{4} \tan ^{-1} \frac{y}{4}=x^{2}+\frac{\pi}{16}
$$

- We now have to rearrange to get ' y ' on its own:

$$
\begin{array}{ll}
\Rightarrow \tan ^{-1} \frac{y}{4}=4 x^{2}+\frac{\pi}{4} & \text { (multiplying across by 4) } \\
\Rightarrow \frac{y}{4}=\tan \left(16 x^{2}+\pi\right) & \text { (taking tan of both sides) } \\
\Rightarrow y=4 \tan \left(16 x^{2}+\pi\right) &
\end{array}
$$

- This is the solution to the differential equation but in this example, we are being asked to find the value of y at a particular value of x, so we need to go a few steps further and fill in x :

$$
\begin{aligned}
\text { When } x=3 & \Rightarrow y=4 \tan \left(16(3)^{2}+\pi\right) \\
& \Rightarrow y=4 \tan (144+\pi) \\
& \Rightarrow y=4(-0.5636) \quad \text { (making sure calc is in rad mode) } \\
& \Rightarrow y=-2.3
\end{aligned}
$$

Day 1: Classwork Questions: Pg 185 Ex 10B Qs 2/3/5/7/9/11/13/14
Day 2: Classwork Questions: Pg 186 Ex 10B Qs 16/17/19/21/22/23

- c) Type 3: $2^{\text {nd }}$ Order Separable Differential Equations
- Example 4: Solve $\frac{d^{2} y}{d x^{2}}=6 \frac{d y}{d x}$ given that $y=1$ when $\frac{d y}{d x}=1$ and $x=0$.

Solution:

- We start by letting some variable represent $\frac{d y}{d x}$, so in this example we will use ' v ':

$$
\text { Let } \mathrm{v}=\frac{d y}{d x} \Rightarrow \frac{d v}{d x}=\frac{d^{2} y}{d x^{2}}
$$

- We now rewrite the first equation we were asked to solve:

$$
\frac{d^{2} y}{d x^{2}}=6 \frac{d y}{d x} \text { becomes } \frac{d v}{d x}=6 v
$$

- We now proceed as we did in Type 1 and solve this differential equation:

$$
\begin{aligned}
& \frac{d v}{d x}=6 v \\
& \Rightarrow d v=6 v \cdot d x \quad \text { (multiplying both sides by } \mathrm{d} x \text {) } \\
& \Rightarrow \frac{1}{v} . d v=6 . d x \quad \text { (dividing both sides by } v \text {) } \\
& \Rightarrow \int \frac{1}{v} \cdot d v=\int 6 . d x \text { (integrating both sides) } \\
& \Rightarrow \log _{e} v=6 x+c \\
& \text { When } \frac{d y}{d x}=v=1, x=0 \quad \text { (applying the given conditions) } \\
& \Rightarrow \log _{e} 1=6(0)+c \\
& \Rightarrow c=0 \\
& \Rightarrow \log _{e} v=6 x+0 \quad \text { (filling in ' } c \text { ' into solution) } \\
& \Rightarrow \log _{e} v=6 x \\
& \Rightarrow v=e^{6 x} \quad \text { (taking } e \text { of both sides) }
\end{aligned}
$$

- We now have to work back from this solution and solve for y, using a similar procedure as before:

$$
\begin{aligned}
& v=e^{6 x} \\
& \Rightarrow \frac{d y}{d x}=e^{6 x} \\
& \Rightarrow d y=e^{6 x} \cdot d x \quad \text { (multiplying both sides by } \mathrm{d} x \text {) } \\
& \Rightarrow \int d y=\int e^{6 x} . d x \text { (integrating both sides) } \\
& \Rightarrow y=\frac{1}{6} e^{6 x}+c \\
& \text { When } y=1, x=0 \quad \text { (applying the given conditions) } \\
& \Rightarrow 1=\frac{1}{6} e^{6(0)}+c \\
& \Rightarrow 1=\frac{1}{6}(1)+c \quad\left(\text { as } e^{0}=1\right) \\
& \Rightarrow c=1-\frac{1}{6}=\frac{5}{6} \\
& \Rightarrow y=\frac{1}{6} e^{6 x}+\frac{5}{6} \operatorname{Or} \frac{1}{6}\left(e^{6 x}+5\right) \quad \text { (filling in the value of } \mathbf{c} \text {) }
\end{aligned}
$$

> Topic 49: Solving Real-Life Problems Using Differential Equations

a) Acceleration:

- Recall from before:

$$
\begin{aligned}
& s=\text { distance/displacement }(\mathrm{m}) \\
& v=\text { velocity }(\mathrm{m} / \mathrm{s}) \\
& a=\operatorname{acceleration}\left(\mathrm{m} / \mathrm{s}^{2}\right)
\end{aligned}
$$

- As acceleration is the rate of change of velocity:

$$
A c c=\frac{d v}{d t} \longrightarrow \text { Used to link } v \text { and } \dagger
$$

- Using the Chain Rule, we can derive an alternative equation for acceleration:

$$
A c c=\frac{d v}{d t}=\frac{d v}{d s} \times \frac{d s}{d t}
$$

- Ans as $v=\frac{d s}{d t}$, then:

Note: If we want to link s and t, we can use either of the results above i.e. get v in terms of t, or get v in terms of s, and then sub in $\frac{d s}{d t}$ for v.

- Example 1: pg 188 Q3

A particle starts from rest at a point P and moves in a straight line subject to an acceleration equal to $v^{2}+100$, where v is the particle's velocity. Find, correct to two decimal places, the time taken to reach $20 \mathrm{~m} / \mathrm{s}$. (Hint: Use radian measure, when calculating $\tan ^{-1} 2$.)

Solution:

- Always sketch a quick diagram of the situation just to check direction of motion and direction of forces in the question:

- It's important to note that we always take the direction of motion as positive.
- In this question, we've been given the acceleration straight away, so we go straight for:

$$
\begin{aligned}
a & =v^{2}+100 \\
\Rightarrow \frac{d v}{d t} & =v^{2}+100 \longrightarrow \begin{array}{l}
\text { Explain why we pick } \\
\text { dv/dt and not v.dv/ds }
\end{array}
\end{aligned}
$$

- Now get all terms with a 'v' to one side and terms with an ' t ' to the other:

$$
\left.\Rightarrow \frac{1}{v^{2}+100} \cdot d v=d t \quad \text { (dividing both sides by } v^{2}+100 \text { and multiply by } d t\right)
$$

- We now integrate both sides:

$$
\int \frac{1}{v^{2}+100} \cdot d v=\int 1 . d t
$$

$$
\Rightarrow \frac{1}{10} \tan ^{-1} \frac{v}{10}=t+C
$$

- We now use the initial conditions to evaluate the constant of integration C :

$$
\begin{aligned}
& @+=0, v=0 \\
& \Rightarrow C=0
\end{aligned}
$$

- Subbing C back into our integral above gives:

$$
\frac{1}{10} \tan ^{-1} \frac{v}{10}=t
$$

- We now rearrange to get ' v ' in terms of ' v ':

$$
\begin{array}{ll}
\tan ^{-1} \frac{v}{10}=10 t & \text { (Multiplying both sides by 10) } \\
\Rightarrow \frac{v}{10}=\tan 10 t & \text { (Taking Tan of both sides) } \\
\Rightarrow v=10 \tan 10 t & \text { (Multiplying both sides by 10) }
\end{array}
$$

- We are interested in where the speed is 20 :

$$
\begin{aligned}
& \Rightarrow 20=10 \tan 10 t \\
& \Rightarrow \tan 10 t=2 \\
& \Rightarrow 10 t=\tan ^{-1} 2 \\
& \Rightarrow 10 t=1.1 \mathrm{rads} \\
& \Rightarrow t=0.11 \mathrm{secs}
\end{aligned}
$$

N.B. Calculator in Radian Mode

Classwork Questions: Pg 188 Qs 1/2/5/6/8/9

- Now let's look at a slightly trickier example.
- Example 2: Pg 189 Q4

A particle moves in a straight line and undergoes a retardation of $\frac{v^{3}}{25^{\prime}}$, where v is the speed.
i) If the initial speed of the particle is $25 \mathrm{~m} / \mathrm{s}$, find its speed when it has travelled a distance of 99 m .
ii) Find the time for the particle to slow down from $10 \mathrm{~m} / \mathrm{s}$ to $5 \mathrm{~m} / \mathrm{s}$.

Solution:

i) In this part, we need to link v and s, so we will start with:

- asd

$$
\begin{array}{ll}
a=-\frac{v^{3}}{25} \\
\Rightarrow v \cdot \frac{d v}{d s}=-\frac{v^{3}}{25}
\end{array} \quad \begin{aligned}
& \text { Negative as it's } \\
& \text { deceleration. }
\end{aligned}
$$

- As before, we will get all terms with a 'v' to one side and terms with an 's' to the other:

$$
\Rightarrow \frac{1}{v^{2}} \cdot d v=-\frac{1}{25} \cdot d s \quad \text { (divide both sides by } v^{3} \text { and multiply by } d s \text {) }
$$

- We now integrate both sides:

$$
\int \frac{1}{v^{2}} \cdot d v=\int-\frac{1}{25} \cdot d s
$$

$$
\Rightarrow-\frac{1}{v}=-\frac{1}{25} s+C
$$

- We now use the initial conditions to evaluate the constant of integration C :

$$
\begin{aligned}
& \text { @ } s=0, v=25 \\
& \Rightarrow C=-\frac{1}{25}
\end{aligned}
$$

- Subbing C back into our integral above gives:

$$
-\frac{1}{v}=-\frac{1}{25} s-\frac{1}{25}
$$

- We now rearrange to get ' v ' in terms of ' s ':

$$
\begin{array}{ll}
\frac{1}{v}=\frac{1}{25} s+\frac{1}{25} & \text { (Multiplying both sides by }-1) \\
\Rightarrow \frac{1}{v}=\frac{s+1}{25} & \text { (Tidying up the RHS into a single fraction) } \\
\Rightarrow \frac{v}{1}=\frac{25}{s+1} & \text { (Inverting both sides) } \\
\Rightarrow v=\frac{25}{s+1} &
\end{array}
$$

- We are interested in where the distance is 99:

$$
\begin{aligned}
& \Rightarrow v=\frac{25}{99+1} \\
& \Rightarrow v=0.25 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

ii) In this part, we need to link vand \dagger, so we will start with:

$$
\begin{aligned}
& a=-\frac{v^{3}}{25} \\
& \Rightarrow \frac{d v}{d t}=-\frac{v^{3}}{25}
\end{aligned}
$$

- As before, we will get all terms with a 'v' to one side and terms with an 's' to the other:

$$
\Rightarrow \frac{1}{v^{3}} \cdot d v=-\frac{1}{25} \cdot d t \text { (divide both sides by } v^{3} \text { and multiply by } d t \text {) }
$$

- We now integrate both sides:

$$
\begin{aligned}
& \int \frac{1}{v^{3}} \cdot d v=\int-\frac{1}{25} \cdot d t \\
& \Rightarrow-\frac{1}{2 v^{2}}=-\frac{1}{25} t+C
\end{aligned}
$$

- We now use the initial conditions to evaluate the constant of integration C :

$$
\begin{aligned}
& @+=0, v=25 \\
& \Rightarrow C=-\frac{1}{1250}
\end{aligned}
$$

- Subbing C back into our integral above gives:

$$
-\frac{1}{2 v^{2}}=-\frac{1}{25} t-\frac{1}{1250}
$$

- We now rearrange to get ' v ' in terms of ' t ':

$$
\begin{array}{lc}
\frac{1}{2 v^{2}}=\frac{1}{25} t+\frac{1}{1250} & \text { (Multiplying both sides by }-1 \text {) } \\
\Rightarrow \frac{1}{2 v^{2}}=\frac{50 t+1}{1250} & \text { (Tidying up the RHS into a single fraction) } \\
\Rightarrow 2 v^{2}=\frac{1250}{505+1} & \text { (Inverting both sides) } \\
\Rightarrow v^{2}=\frac{625}{505+1} & \\
\Rightarrow v=\frac{25}{\sqrt{50 t+1}} &
\end{array}
$$

- We are interested in where the time taken to go between $10 \mathrm{~m} / \mathrm{s}$ and $5 \mathrm{~m} / \mathrm{s}$:

If $v=10:$	If $v=5:$
$10=\frac{25}{\sqrt{50 t+1}}$	$5=\frac{25}{\sqrt{50 t+1}}$ $\Rightarrow 10 \sqrt{50 t+1}=25$ $\Rightarrow t=0.105$ secs
	$\Rightarrow 5 \sqrt{50 t+1}=25$
	$\Rightarrow t=0.48$ secs

$$
\begin{aligned}
& 5=\frac{25}{\sqrt{50 t+1}} \\
& \Rightarrow 5 \sqrt{50 t+1}=25 \\
& \Rightarrow t=0.48 \text { secs }
\end{aligned}
$$

- We can now find the time taken to travel between those two speeds:

$$
\Rightarrow 0.48-0.105=0.375 \text { secs }
$$

Day 1: Classwork Questions: Pg 189 Ex 10 E Qs $1 / 3 / 6$ and then try Q7
Day 2: Classwork Questions: Pg 189 Ex 10E Qs 8/9/11/13

- Derivation of Equations of Motion:
- We saw above that acceleration is given by:

$$
\begin{gathered}
a=\frac{d v}{d t} \\
\Rightarrow d v=a \cdot d t
\end{gathered}
$$

- We now integrate both sides:

$$
\begin{gathered}
\int d v=\int a \cdot d t \\
v=a t+C \\
@ t=0, v=u \\
\Rightarrow u=a(0)+C \\
\Rightarrow u=C \\
\Rightarrow v=u+a t
\end{gathered}
$$

- We know also that velocity is given by:

$$
\begin{gathered}
v=\frac{d s}{d t} \\
\Rightarrow d s=v \cdot d t
\end{gathered}
$$

- Subbing in $v=u+a t$ gives:

$$
d s=(u+a t) \cdot d t
$$

- Integrating both sides gives:

$$
\begin{gathered}
\int d s=\int(u+a t) \cdot d t \\
s=u t+a\left(\frac{t^{2}}{2}\right)+C \\
@ t=0, s=0 \\
\Rightarrow 0=u(0)+a\left(\frac{(0)^{2}}{2}\right)+C \\
\Rightarrow C=0 \\
\Rightarrow S=u t+\frac{1}{2} a t^{2}
\end{gathered}
$$

- Subbing in $v=u+$ at gives:

$$
\begin{gathered}
a=v \frac{d v}{d s} \\
\Rightarrow v \cdot d v=a . d s
\end{gathered}
$$

- Integrating both sides gives:

$$
\begin{gathered}
\int v \cdot d v=\int a \cdot d s \\
\Rightarrow \frac{v^{2}}{2}=a s+C \\
@ s=0, v=u \\
\Rightarrow \frac{(u)^{2}}{2}=a(0)+C \\
\Rightarrow C=\frac{u^{2}}{2} \\
\Rightarrow \frac{v^{2}}{2}=a s+\frac{u^{2}}{2} \\
\Rightarrow v^{2}=u^{2}+2 a s
\end{gathered}
$$

b) Power:

- Recall from before:

$$
\text { Power }=\text { Tv } \quad \text { Where } T=\text { Tractive Force }, v=\text { velocity }
$$

- Example: A car of mass 1200 kg starts at rest on a horizontal road. Engine of car is working at constant power of 1500W. Find an expression for the acceleration in terms of its velocity.

Solution:

$$
\begin{aligned}
& \text { Power }=F v \\
& \Rightarrow F=\frac{1500}{v}=m a \\
& \Rightarrow \frac{1500}{v}=(1200) a \\
& \Rightarrow a=\frac{5}{4 v}
\end{aligned}
$$

- You now proceed as we did in the previous questions.

Classwork Questions: Pg 191 Ex 10F Qs 1/3/2/5
c) Populations, Finance and Cooling Problems:

- Let's look at some non-mechanics type problems.

Note on Proportionality:

- If one quantity is proportional to another, it means that one changes in a similar way to the other.
- For example, Voltage in a simple circuit is proportional to the Current flowing through the circuit and we can write that in symbols as $V \propto I$.
- The proportionality relationship means that if the voltage doubles, then the current doubles also, or if the current halves, then the voltage halves also.
- To make a more useful mathematical statement that we can work with, we can write this relationship instead as:

$$
V=k I \quad, \text { where } \mathrm{k} \text { is some constant }
$$

- Example: Pg 194 Ex $10 G$ Q5

Newton's Law of Warming states that 'the rate of warming of a body is proportional to the difference between the temperature of the body and the temperature of its surroundings.'
i) If θ is the difference between the temperature of a body and the temperature of its surroundings, show that $\frac{d \theta}{d t}=k \theta$.
ii) A body warms up from $2^{\circ} \mathrm{C}$ to $8^{\circ} \mathrm{C}$ in 6 minutes in a place where the temperature of the surroundings is a constant $25^{\circ} \mathrm{C}$. Find the value of k to one significant figure.
iii) What will the temperature of the body be in a further 6 minutes? Give your answer to one decimal place.
Solution:
i) θ is the difference between the temperature of a body and the temperature of its surroundings and the rate of warming is given by $\frac{d \theta}{d t}$

$$
\begin{aligned}
& \Rightarrow \frac{d \theta}{d t} \propto \theta \\
& \Rightarrow \frac{d \theta}{d t}=k \theta
\end{aligned}
$$

ii) Let's rearrange this differential equation as we've done previously:

$$
\frac{1}{\theta} \cdot d \theta=k \cdot d t
$$

- We now integrate both sides:

$$
\begin{aligned}
& \int \frac{1}{\theta} \cdot d \theta=\int k \cdot d t \\
& =\ln \theta=k t+C
\end{aligned}
$$

- We now use the initial conditions to evaluate the constant of integration C, but there are a few things to be cautious of here.
- Firstly, the temperature warms up from $2^{\circ} \mathrm{C}$ to $8^{\circ} \mathrm{C}$ in 6 minutes, so we take the time as zero at $2^{\circ} \mathrm{C}$ when our measurements started i.e. temperature is $2^{\circ} \mathrm{C}$ when $\dagger=0$.
- Secondly, θ is the difference between the temperature of a body and the temperature of its surroundings, so we have to be careful when subbing in values for θ.
- For example, when the temperature is $2^{\circ} \mathrm{C}$, the value of θ will be $25^{\circ} \mathrm{C}-2^{\circ} \mathrm{C}=23^{\circ} \mathrm{C}$, so:

$$
\begin{aligned}
& @ t=0, \theta=23 \\
& \Rightarrow \ln 23=k(0)+C \\
& \Rightarrow C=\ln 23
\end{aligned}
$$

- Subbing C back into our integral above gives:

$$
\ln \theta=k t+\ln 23
$$

- In this question, we have another set of initial conditions, which allows us to evaluate k :

$$
\begin{align*}
& @ t=6, \theta=25-8=17 \\
& \Rightarrow \ln 17=k(6)+\ln 23 \\
& \Rightarrow \ln 17-\ln 23=k(6) \\
& \Rightarrow 6 k=\ln \frac{17}{23} \tag{UsingLaw2ofLogs}
\end{align*}
$$

$\Rightarrow 6 k=-0.3$
$\Rightarrow k=-0.05$
iii) We can now rearrange our solution above to tidy it up:

$$
\begin{aligned}
& \ln \theta=k t+\ln 23 \\
& \Rightarrow \ln \theta-\ln 23=(-0.05) t \\
& \Rightarrow \ln \frac{\theta}{23}=-0.05 t \\
& \Rightarrow \frac{\theta}{23}=e^{-0.05 t} \quad \text { (Taking e of both sides) } \\
& \Rightarrow \theta=23 e^{-0.05 t}
\end{aligned}
$$

- We are now asked about the temperature in a "further 6 minutes" i.e. when $t=12$

$$
\begin{aligned}
& \Rightarrow \theta=23 e^{-0.05(12)} \\
& \Rightarrow \theta=12.62^{\circ}
\end{aligned}
$$

- Finally, recall that θ is the difference between the temperature of a body and the temperature of its surroundings, so the temperature of the body has to be:

$$
\text { Temp }=25-12.62=12.4^{\circ} \mathrm{C}
$$

Day 1: Classwork Questions: Pg 193/194 Ex $10 G$ Qs 2/3
Day 2: Classwork Questions: Pg 193/194 Ex $10 G$ Qs 1/4/8 (They will need help starting these)

Revision Questions and Test

