Q1. How many ways can the letters of the	Q2. How many arrangements of the word DUBLIN
word IRELAND be arranged if each letter	begin with the letter D?
is used exactly once in each arrangement?	Ans: 120
In how many of these arrangements do the	Q3. A team of 4 is to be selected from a squad of
three vowels come together?	10. How many teams are possible?
Ans: 5040, 720	Ans: 210
Q4. How many 5 digit numbers can be	Q5. How many ways can the letters of the word
made from the digits 3, 4, 5, 6 and 7, if no	DENMARK be arranged if the letters A and E must
digit may appear more than once in each	not be side by side?
number? How many of these numbers are	Ans : 3600
even? How many are greater than 50,000?	
Ans: 120, 48, 72	
Q6. There are 6 people in a room. If	Q7. Given / different points on a plane, no three
everyone shakes hands with everyone else	of which are collinear, how many different
how many handshakes take place?	triangles can be drawn?
Ans: 15	Ans: 35
Q8 . A bag contains 10 discs, 6 red and 4	Q9. A team of 5 is to be chosen from 8 men and 7
black. Two discs are removed from the bag.	women. (i) How many teams can be chosen that
Find the probability that they are: (i) both	contain exactly three men? (ii) How many teams
red (ii) the same colour (iii) different	contain more men than women?
colours	Ans : 1176, 1722
Ans: (i) $\frac{1}{3}$ (ii) $\frac{7}{15}$ (iii) $\frac{6}{15}$	
Q10. There are 30 days in June. Seven	Q11. A box contains 4 silver coins, 2 gold coins
students have their birthdays in June. The	and x copper coins. Two coins are picked at
birthdays are independent of each other	random, and without replacement, from the box. (i)
and all dates are equally likely. (i) What's	Write down an expression in x for the probability
the probability that all 7 students have the	that the two coins are copper.
same birthday? (ii) What's the probability	(i) If it's known that the probability of picking two
that all 7 have different birthdays? (iii)	copper coins is $\frac{4}{10}$ how many copper coins are in the
Show that the probability that at least 2	box? (iii) What is the probability that one of the 2
have the same birthday is greater than 0.5.	coins picked is copper?
Ans: (i) $\frac{1}{770,000,000}$ (ii) 0.47	Ans: (i) $\frac{x^2 - x}{x}$ (ii) 8 (iii) $\frac{48}{8}$
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Q12. There are 16 discs in a board game: 5	Q13. At the Olympic Games, 8 lanes are marked on
blue, 3 green, 6 red and 2 yellow. Four	the running track. Each runner is allocated to a
discs are chosen at random. What is the	different lane. Find the number of ways in which
probability that: (i) the 4 discs are blue?	the runners in a heat can be allocated to these
(11) the 4 discs are the same colour? (11) all	lanes when there are (1) 8 runners in the heat (11) 5
4 discs are different in colour? (iv) 2 of	runners in the heat and any 5 lanes may be used.
the discs are blue and 2 are not blue?	Ans : (1) 40,320 (11) 6720
Ans : (i) $\frac{1}{364}$ (ii) $\frac{1}{91}$ (iii) $\frac{1}{91}$ (iv) $\frac{35}{182}$	
Q14. A subcommittee of 5 is to be chosen	Q15. The results of a survey are normally
from a committee of 10. If one particular	distributed with a mean of 65 and a standard
person is to serve on both committees, in	deviation of 12. If a person is selected at random,
how many ways can the subcommittee be	what's the probability that he had a score between
chosen? Ans: 126	53 and 83? Ans: 0.7745

Q16. For a lottery, 35 cards numbered 1 to 35 are placed in a drum. Five cards will be chosen at random from the drum as the winning combination. (i) How many combinations will match exactly 4? (ii) How many combinations will match exactly 3? (iii) Show that the probability of matching at least three numbers is approximately 0.014. Ans: (i) 150 (ii) 4350	Q17. A classroom contains 15 desks, which are arranged in rows. The front row contains 3 desks. 15 students are seated at random in the classroom, 8 of whom are boys and 7 of whom are girls. Each desk seats only one student. What is the probability that: (i) 3 girls occupy the front row? (ii) there are more boys than girls in the front row? (iii) there are 2 girls and 1 boy in the front row with the 2 girls seated next to each other? Ans: (i) $\frac{1}{13}$ (ii) $\frac{36}{55}$ (iii) $\frac{16}{65}$
Q18. In a game of chess against a particular opponent, the probability that Sean wins is $\frac{3}{5}$. He plays 6 games against the opponent. What's the probability that	Q19. The probability of passing a driving test is $\frac{2}{3}$. Six students take the test. Find the probability that: (i) none of them pass (ii) half of them pass Ans: (i) $\frac{1}{729}$ (ii) $\frac{160}{729}$
Sean will: (i) lose the 2 nd game and 4 th games and win the rest? (ii) win exactly 4 games? (iii) lose at least 4 games? Ans: (i) 0.021 (ii) 0.311 (iii) 0.1792	Q20. A and B are two independent events such that $P(A) = 0.2$ and $P(B) = 0.15$. Evaluate the following probabilities: (i) $P(A \cap B)$ (ii) $P(A B)$ (iii) $P(A \cup B)$ Ans: (i) 0.03 (ii) 0.2 (iii) 0.32
Q21. z is a random variable with standard normal distribution. Find (i) $P(z \le 1.32)$ (ii) $P(z > -0.4)$ (iii) $P(1.3 \le z \le 2)$ (iv) $P(-0.67 \le z \le 1.5)$ Ans: (i) 0.9066 (ii) 0.6554 (iii) 0.074 (iv) 0.6818	Q22. The events A and B are such that $P(A) = 0.45$, $P(B) = 0.35$ and $P(A \cup B) = 0.7$. Find (i) $P(A \cap B)$ (ii) Explain why the events A and B are independent. (iii) Find the value of $P(A B)$. Ans: (i) 0.1 (ii) 0.286
Q23. E and F are events such that $P(E F) = \frac{1}{2}$, $P(F E) = \frac{1}{3}$ and $P(E \cap F) = \frac{1}{7}$. Find $P(E \cup F)$. Ans: $\frac{4}{7}$	Q24. Given that $P(A) = 0.8$, $P(B) = 0.7$ and $P(A B) = 0.8$. (i) Find $P(A \cap B)$ (ii) Show that A and B are independent. Ans: (i) 0.56
Q25. Two events A and B are such that $P(A) = \frac{8}{15}$, $P(B) = \frac{1}{3}$, $P(A B) = \frac{1}{5}$. Calculate the probability that (i) both events occur (ii) only one of the two events occurs (iii) neither event occurs. Ans: (i) $\frac{1}{15}$ (ii) $\frac{11}{15}$ (iii) $\frac{3}{15}$	Q26. A friend of yours offers you a bet: you have to bet €5. Then you pick a card from a pack. If you choose a Picture Card, you win €20 and if you pick an Ace, you win €50. Is this a good bet? Justify your answer with reference to the expected value. Ans: Good bet as can expect to win €3.47 on average each game.