Q1. Simplify $\left(a^{2}-b^{2}\right)^{\frac{1}{2}}(a+b)^{-\frac{1}{2}}(a-b)^{\frac{3}{2}}$.
Ans: $(a-b)^{2}$

Q5. Solve the equation $4|x+1|=3|x+1|$.
Ans: $x=-1$
Q8. Show that $\frac{a+b}{2} \leq \sqrt{\frac{a^{2}+b^{2}}{2}}$, where a and b are real.
Q10. If the equation $x^{2}+k x+(k+3)=0$, has two equal roots, find two possible values of k.
Ans: $\mathrm{k}=-2,6$
Q12. Simplify $2^{\frac{1}{4}}+2^{\frac{1}{4}}+2^{\frac{1}{4}}+2^{\frac{1}{4}}$. Ans: $2^{\frac{9}{4}}$
Q14. Determine the values of $m \in R$ for which the quadratic equation
$10 x^{2}+4 x+1=2 m x(2-x)$ has real roots.
Ans: $m \leq-\frac{1}{2}$ or $m \geq 3$
Q17. If $y=a^{2}$ and $a^{3} b=1$, express y in the form b^{n}. Ans: $b^{-\frac{2}{3}}$
Q19. Solve the equations $2 x-3 y=1$ and $x^{2}+x y-4 y^{2}=2$. Ans: $(2,1)$ and $(11,7)$
Q21. Form the quadratic equation whose roots are $-\frac{2}{3}$ and 4. Ans: $3 x^{2}-10 x-8=0$
Q23. The population of a city grows according to the law $P=40000(1.03)^{n}$, where n is the time in years and P is the population size.
(i) Estimate the size of the population in 12 years' time (ii) Determine when the population with have doubled (to the nearest half-year).
Ans: (i) 57,030 (ii) 23.5 yrs

Q27. (i) Construct a quadratic equation with roots k and $2 k$. (ii) Hence, show that if one root of the equation $x^{2}+a x+b=0$ is twice the other, then $9 b=2 a^{2}$. Ans: (i) $x^{2}-3 k x+2 k^{2}=0$ Q28. A dose of radioactive medicine decays at the rate of 15% per hour. If the original dose is 80 mg , and $f(x)$ represents the amount left in her body x hours after receiving the dose,
(i) calculate the amount left after 4 hours
(ii) find the value of x when $f(x)=20$,
(iii) the amount by which $f(x)$ decreases in the third hour. Ans: (i) 41.76 (ii) 8.53 (iii) 8.67

Q2. Solve $2 x^{3}-3 x^{2}-8 x-3=0$ and hence sketch the function $f(x)=2 x^{3}-3 x^{2}-8 x-3$.
Ans: $x=-1,3,-0.5$
Q4. Simplify $\frac{2-\sqrt{3}}{2+\sqrt{3}}$. Ans: $7-4 \sqrt{3}$
Q6. Solve $|2 x-1|<3$. Ans: $-1<x<2$
Q7. Solve $3 e^{x}-7+2 e^{-x}=0$. Ans: $\ln 2,-\ln 3$
Q9. Solve the inequality $\frac{x+3}{2 x-1} \leq 4$, for $x \in$
$R, x \neq \frac{1}{2} \quad$ Ans: $x<\frac{1}{2}$ or $x \geq 1$
Q11. Given that $\frac{3}{5}$ is a root of $5 x^{3}+7 x^{2}-k x+$ $3=0$, find the value of k. Find the other 2 roots in the form $a \pm \sqrt{b}$. Ans: $\mathrm{k}=11,-1 \pm \sqrt{2}$
Q13. Solve: $6 \log _{x} 2+\log _{2} x=5$. Ans: $x=4,8$
Q15. If $2^{x}+2^{x+1}+2^{x+2}=k .2^{x}$, find the value of k. Ans: $k=7$
Q16. Solve the equation
$\log _{2}(7 x+2)-\log _{2}(x+2)=2$. Ans: $x=2$
Q18. Solve the equation $2^{2 y+1}-5\left(2^{y}\right)+2=0$.
Ans: $y= \pm 1$
Q20. Solve $32^{x-1}=28$ for x, correct to two places of decimals. Ans: $x=1.96$
Q22. Simplify $\frac{x^{\frac{3}{2}}-x^{-\frac{1}{2}}}{x^{\frac{1}{2}}-x^{-\frac{1}{2}}}$. Ans: $x+1$
Q24. Sketch a rough graph of the polynomial $f(x)=2(x+2)^{3} x^{2}(x-2)^{2}$.
Q25. If $(x+a)^{2}$ is a factor of $x^{3}+6 p x+k$, show that (i) $k+2 a^{3}=0$ (ii) $k^{2}+32 p^{3}=0$

Q26. Solve the equations $A: \frac{2 x}{5}+\frac{y}{8}+z=\frac{5}{2}$
$\mathrm{B}: \frac{x+1}{3}-\frac{y}{2}-4 z=0$ and $C: \frac{x+y+z}{2}=1$.
Ans: $x=5, y=-4, z=1$
Q29. The graph of the polynomial $y=f(x)$ of degree 6 is shown below.

(i) Find an expression for the polynomial $f(x)$.
(ii) If the curve contains the point $(0,2)$, find the value of $c \in R$ if $(3, c)$ lies on the curve.
Ans: (i) $f(x)=(x-1)^{3}(x+1)^{2}(x-2)$ (ii) 128

