Topic 10: Statistics 1) The Basics:

	Τ			
<u>a) Terminology:</u>	b) Collecting Data:			
Numerical: data is numbers	Notes: When selecting people to survey it is important that:			
e.g.s shoe size, height, rainfall, number of kids in a family	the sample is selected randomly to avoid bias			
Categorical: data is text e.g.s eye colour, hair colour	the sample represent the population and is sufficiently			
• Discrete: numerical data that only takes on set values (usually	large			
whole numbers) e.g.s shoe size, number of kids in house	Methods of Collecting Data:			
• Continuous: numerical data that can take on a range of values	Phone Interview:			
(can be decimals) e.g.s rainfall in mm, weight, height	Advs: questions can be explained, can select from entire			
• Ordinal: categorical data that can be put into order	popn			
e.g. grades in an exam A, B, C	Disadvs: expensive compared to post or online			
• Nominal: categorical data that cannot be put into order	Online Questionnaire:			
e.g. phone brand	Advs: cheap, anonymous so answers are more honest			
• Primary Data: data collected by person who's going to use it	Disadvs: people may not respond, not representative of			
• Secondary Data: data that's already available e.g. internet	entire populationonly those that are online			
• The population is the entire group being studied.	Face to Face Interview:			
• A sample is a group that is selected from the population.	Advs: questions can be explained			
• A census is a survey of the whole population.	Disadvs: people might not answer honestly when asked in			
• A sampling frame is a list of all those within a population who	person, expensive and not random			
can be sampled.	Postal Questionnaire:			
• An outlier is an extreme value that is not typical of other	Advs: not expensive Disadvs: people don't always respond			
values in the data set.	Observation:			
• Bias can mean something which sways a respondent in a	Advs: low cost, easy to carry out			
particular way or another, in a survey/questionnaire. The	Disadvs: not suitable for some surveys, Qs can't be			
term bias can also be used if a sample doesn't reflect the	explained			
population. E.g. selecting people coming out of Lidl and asking	Tips for designing a questionnaire:			
them their opinion on shopping in non-Irish owned retailers.	Use clear & simple language			
	 Begin with simple questions and avoid personal questions 			
	 Accommodate all possible answers & no leading question 			
	· Accommodure un possible unswei sig no ledding question			

• Be as brief as possible and be clear where answers go

c) Types of Sampling:

- 1. Simple Random Sample: A sample of a certain size selected in such a way that each sample of that size has an equal chance of being selected. E.g. put names of the population being studied in a hat, and draw out the names.
- 2. Stratified Random Sample: Population divided into two or more subgroups with similar characteristics a proportional sample is drawn from each subgroup. E.g. to get the attitudes of students in a school to underage drinking then a sample is selected from each group. If there are twice as many 2nd years as 1st years, then the sample of 2nd years should be twice as big as the 1st year sample.
- Cluster Sample: Population divided into clusters and then the clusters selected randomly. E.g. political party wants to get opinions
 of citizens leaving polling stations on an election day polling stations would be clusters of the population a number of polling
 stations are selected and everyone coming out of that station is surveyed.
- 4. Quota Sampling: Person selecting the sample is given a quota to fill and selects it in the most convenient way. E.g. a company wants opinion of men under 25 yrs on an issue person collecting the data stops random people in the street who are under 25 not random and open to mistakes.
- 5. **Systematic Sampling**: The person selecting the sample chooses every nth person from the population. E.g. if Tesco wanted to survey their customers, they could select every 20th person that enters their stores on a particular day and survey them. A disadvantage would be the easy introduction of bias depending on who the nth people are e.g. if every 20th person was a pensioner than the results are not representative of the population of Tesco shoppers.
- 6. Convenience Sampling: You survey those that are easiest for you to reach. E.g. Surveying people from your workplace or school. One disadvantage of this method is the selection isn't random.

2) Graphing Data from Junior Cert:

3) Scatter Plots/Correlation:

4) Analysing Data:

5) Measures of Relative Standing:

b) Z<u>-Scores:</u> a) Percentiles: Notes: Notes: Percentiles divide a data set up into 100 equal parts. ≻ Another way of comparing values in a data set. P_{50} would be the 50th percentile, which means 50% of the ⊳ Z-scores tell us how many standard deviations a particular data is lower than this value i.e. the median value is from the mean. To calculate the z-score for a particular data value we use ⊳ the formula: Steps to find the k^{th} percentile P_k : $z = \frac{x - \mu}{\sigma}$ 1. Rank the data See pg34 2. Count the number of values and add 1 to it. Tables book 3. Find k% of the number from step 2, and call it 'c' 1) If 'c' is a whole number, then this represents the where μ is the mean and σ is the standard deviation. value in the data set If a z-score is bigger than 2 or less than -2, then the data ≻ 2) If 'c' is not a whole number, then find the mean of value is said to be unusual. the c^{th} and (c + 1)^{\text{th}} value Example: A particular Maths class had a mean result of 63% and Example: Find i) P40 and ii) P75 for the following set of Maths a standard deviation of 7%. If a certain student got a result of results: 48%, comment on his performance. 97, 94, 88, 95, 96, 81, 83, 92, 80, 87, 93, 92, 89, 83, 95 Solution: i) To find P₄₀ First, let's calculate the z-score: $z = \frac{x - \mu}{\sigma}$ 0 - Rank the data first: 80, 81, 83, 83, 87, 88, 89, 92, 92, 93, 95, 95, 95, 96, 97 - There are 15 values here so we add 1 to 15 in a similar way as we $z = \frac{48 - 63}{7}$ did when finding quartiles and the median. To find P_{40} we need to find 40% of 16: 40% of 16 = 6.4 $z = \frac{-15}{7} = -2.14$ - 6.4 is between 6 and 7 so that means we want the average of the 6th and 7th value i.e. This z-score tells us that the student's result was unusual in $P_{40} = \frac{88 + 89}{2} = 88.5$ ≻ => 40% of the data is below 88.5 the context of this particular test. The majority of the ii) To find P75 class would have scored between 49% (2 standard - We need to find 75% of 16 this time deviations below the mean) and 77% (2 standard deviations 75% of 16 = 12 so this is the 12th value above the mean) - So that means P₇₅ = 95 => 75% of the data is below 95

6) Frequency Distributions:

a) Frequency Distributions:											b) Mean, Mode and Median of a Frequency Distribution:				
• A frequency distribution is a way of grouping together a										gether a	Mode: Can be read straight away from the table on the left				
	large amount of data into a table. E.g.									-	=> Mode = 4 as it appears the most often (14 times)				
		No. in	Household	1 2	3	4	5	6	7	7	Mean: • We could add up all the values in the full list, shown below				
		No. of	People	6	8	14	11	4	1		the table above, and then divide by 44				
•	• Always remember what this table representsi.e. a full list of data: 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4										table i.e. (2x6)+(3x8)+(4x14)+(5x11)+(6x4)+(7x1)				
c) Grouped Frequency Distributions:									, .	••••••	 We then divide this by 44 to get a mean of 4.04 <u>Median:</u> Count up how many values we have in total by adding the 				
	• If the frequency distribution is a grouped frequency														
•										•					
	distribution, all the calculations shown above are the same										bottom row i.e. 6 + 8 + 14 + 11 + 4 + 1 = 44				
	except we use mid-interval values instead. E.g.									_	\circ This means that the median here will be the average of the				
		Age	0-10	10-20	2	0-3(0	30	-40)	22nd and 23rd values.				
		Freq	2	5		4		8	8		• We can find the 22nd and 23rd values from the table above				
• The mid-interval values for the age row are 5, 15, 25 and									5, 1	15, 25 and	i.e. the first 14 values are '2' and '3' and the next 14 values				
35.											are '4', which would include the 22nd and 23rd values				
• We now proceed to find mean, median and mode as in (b).										as in (b).	=> Median = $\frac{4+4}{2}$ = 4				

7) Empirical Rule:

Notes:

- > Rule is used to make some estimates of populations that are normally distributed.
- > Need to calculate the mean of the data to write in the value for μ in the diagram on the right.
- > Need to calculate the standard deviation σ to work out the other values along the bottom of the diagram.

Example: A 6th year Maths class results have a mean of 57% and a standard deviation of 2.5%. There are 25 in the class. Estimate the following:

i) the percentage of the class that scored between 52% and 62%

ii) the number of students who scored between 54.5% and 57%

iii) The percentage of the class that scored above 64.5%

ii) If 68% are between 54.5% and 59.5%, then there must be half that between 54.5% and 57% => 34% of the class => 34% of 25 = 8.5 students iii) The percentage outside of the range 49.5% and 64.5% is 100% - 99.7% = 0.3%

=> Half of this percentage must be above 64.5% => 0.15%

8) Standard Deviation:

9) Inferential Statistics:

 \hat{p} = sample proportion (the % of the sample) E.g. in a sample of 10 Maths classes across the country 12 out of 250 get an A in Maths then the sample proportion is 12 250

The standard error of the proportion is given by: ≻

Generally, we don't know p and we have to use \hat{p} in the formula.

A 95% confidence interval for the population proportion is:

** The formula in the tables doesn't contain the 1.96, as that figure is added when looking for 95% confidence.

Example: Company wants to get an estimate of the proportion of employees on sick leave. In a sample of 20, 9 reported that they had taken sick leave. Construct a 95% confidence interval for p.

- The sample proportion is :
$$\hat{p} = \frac{9}{20} = 0.45 \text{ or } 45\%$$

- The margin of error is :
$$E = 1.96 \sqrt{\frac{0.45(1-0.45)}{20}} = 0.218$$

And now, we can set up our confidence interval: 0.45 - 0.218= 0.232 < *p* < 0.668

c) Hypothesis Testing:

Notes:

- A hypothesis is a statement or claim about a population.
- A hypothesis test is a method of testing a claim.
- The null hypothesis is a statement that describes the
- population proportion.

Steps:

1. State the null hypothesis H_0 and the alternative H_1 . Method 1: Using 95% Confidence Interval (can be used for either population proportion or population mean type questions) 2. Work out the 95% confidence interval and see if the value in the null hypothesis is in the interval or not

3. If the value is outside the interval, then we "reject the null hypothesis and accept the alternative".

4. If the value is inside the interval, then we "fail to reject the null hypothesis".

Method 2: Using z-scores and critical regions (can be used for population mean questions only)

2. Calculate the z-score for the claimed value

3. For 95% confidence, we check if the z-score is above or

below ±1.96 i.e. in the "critical regions".

- If the value is above/below ± 1.96 , then we "reject H₀, and accept H₁"
- If the value is within ±1.96 of the mean, then we "fail to reject Ho"

Method 3: Using p-values (See part (d))

(

 μ = population mean, σ = population standard deviation \bar{x} = mean of the sample, s = standard deviation of the

 $\sigma_{\bar{x}}$ = standard error of the mean

The Central Limit Theorem is used in these problems: ⊳

Once the sample size
$$\geq$$
 30, then
1) $\mu = \bar{x}$ 2) $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$ 3) Shape of
sampling distribution is symmetric

Central Limit Theorem holds for sample sizes of < 30, if ≻ the original population is normally distributed. \triangleright The Margin of Error can be found using:

$$E = 1.96 \frac{\sigma}{\sqrt{n}}$$

where n is the size of the sample, and σ is the standard deviation.

A 95% confidence interval for the mean of the population is given by:

$$\overline{\overline{x} - E} < \mu < \overline{x} + E$$

d) P-Values: Notes:

⊳

The p-Value is the probability of getting a result as extreme \geq as the actual value of the z-score, for that data value.

Steps:

1. State the null hypothesis H₀ and the alternative H₁.

2. Calculate the z-score for the claimed data value.

3. Use the tables to calculate the probability of a value being as

extreme, or more extreme than that data value.

4. Double the probability you get from step 3.

5. If the p-value from step 4, is less than the level of significance (usually 5% = 0.05), then we "reject the H₀ and accept H1".

4. If p-value is from step 4 is > 0.05, then we "fail to reject H₀".

Example: Food company claims mean weight of packets of museli is 500g, with a std dev of 15g. Random sample of 64 shows a mean weight of 496g.

$$H_0: \mu = 500 \qquad \qquad H_1: \mu \neq 500$$

- For the sample $\bar{x} = 496$.

- So, the test statistic T is then:

$$T = \frac{\bar{x} - \mu}{(\frac{\sigma}{\sqrt{n}})} = \frac{496 - 500}{(\frac{15}{\sqrt{64}})} = -2.13$$

=> From tables the p-Value = 2(1 - 0.9834) = 0.0332- At a 5% level of significance, $\alpha = 0.05$. As the p-Value is less than α , the result is significant, and we reject H₀.