Topic 2: Complex Numbers

1) The Basics:

a) Definition:	b) Adding/Subtracting:
Notes:	Note:
$>$ A complex number is of the form $a+b i$. > $\quad i=\sqrt{-1}$	> Add/Subtract like terms together as we did in Algebra Example: $z_{1}=3-2 i$ and $z_{2}=4+5 i$, evaluate i) $z_{1}+z_{2}$ ii) $z_{1}-2 z_{2}$
\sim^{-1}	i) $z_{1}+z_{2}=3-2 i+4+5 i=7+3 i$ i) $z_{1}-2 z_{2}=3-2 i-2(4+5 i)=3-2 i-8-10 i=-5-12 i$
c) Multiplying Complex Numbers:	
Notes:	Example 2: If $z_{1}=3+4 i$ and $z_{2}=-2-5 i$, evaluate $z_{1} \cdot z_{2}$.
When multiplying by a constant, we treat as usual , When multiplying by an ' i ' or another complex number	$z_{1} \cdot z_{2}=(3+4 i)(-2-5 i)$ $=3(-2-5 i)+4 i(-2-5 i)$
we have to use the definition 0 .	$=-6-15 i-8 i-20 i^{2}$
Example 1: If $z_{1}=2-5 i$, evaluate $3 z_{1}$.	$=-6-15 i-8 i-20(-1)$
$3 z_{1}=3(2-5 i)$	$=-6-15 i-8 i+20$
$=6-15 i$	$=14-23 i$

2) Argand Diagram/Modulus:

b) Modulus:

Notes:

> Modulus is the distance from the origin $(0,0)$ to the complex number.

> When finding $|z|$, ensure z is in the form $a+b i$ first.
Example: If $z_{1}=3+4 i$ and $z_{2}=-2-5 i$, evaluate i) $\left|z_{2}\right|$ and ii) $\left|3 z_{2}-2 z_{1}\right|$

$$
\begin{aligned}
& \text { i) }\left|z_{1}\right|=\sqrt{(-2)^{2}+(-5)^{2}} \quad \text { ii) Tidy up the expression into the } \\
& =\sqrt{29} \\
& \text { form a }+ \text { bi first: } \\
& 3 z_{2}-2 z_{1}=3(-2-5 i)-2(3+4 i) \\
& =-6-15 i-6-8 i=-12-23 i \\
& \Rightarrow\left|3 z_{2}-2 z_{1}\right|=|-12-23 i|= \\
& \sqrt{(-12)^{2}+(-23)^{2}}=\sqrt{673}=25.9
\end{aligned}
$$

3) Conjugates/Division of Complex Numbers:

a) Conjugate:

Examples:
i) If $z_{1}=3+4 i \Rightarrow \overline{z_{1}}=3-4 i$
ii) If $z_{2}=-2-5 i \Rightarrow \overline{z_{2}}=-2+5 i$
iii) If $z_{3}=3 i-1 \Rightarrow \overline{z_{3}}=-3 i-1$
b) Division of Complex Numbers:

Example: Evaluate $\frac{3+5 i}{2-3 i}$.

$$
\begin{aligned}
& \frac{3+5 i}{2-3 i} \times \frac{2+3 i}{2+3 i} \\
& =\frac{(3+5 i)(2+3 i)}{(2-3 i)(2+3 i)}=\frac{6+9 i+10 i+15 i^{2}}{4+6 i-6 i-9 i^{2}} \\
& =\frac{6+9 i+10 i-15}{4+6 i-6 i+9}=\frac{-9+19 i}{13}=-\frac{9}{13}+\frac{19}{13} i
\end{aligned}
$$

4) Solving Equations involving Complex Numbers:

a) Quadratic Equations with Complex Roots:

Notes:
> To solve an equation of the form $a z^{2}+b z+c=0$, we can use the '-b Formula' from Algebra Topic - Section 3d

Example: Solve the equation $z^{2}-2 z+10=0$.
$\Rightarrow a=1, b=-2$ and $c=+10$
$Z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$Z=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(10)}}{2(1)}$
$Z=\frac{2 \pm \sqrt{-36}}{2} \quad$ (tidying up under the

$Z=\frac{2 \pm \sqrt{-1} \sqrt{36}}{2} \quad($ as $\sqrt{a b}=\sqrt{a} \sqrt{b})$
$z=\frac{2 \pm 6 i}{2} \quad$ (using definition of i from Section
1a)
$z=1 \pm 3 \mathrm{i}$

c) Solving Cubic Equations with Real Coefficients:

Notes

> To show a root is a root of an equation, fill in the root for z and see if LHS = RHS.
> As long as coefficients are real, conjugate root theorem also applies to help find roots.
> If two roots are known, form quadratic equation using method from part (b) and then use long division to find the third factor/root.
Example: $f(z)=2 z^{3}-9 z^{2}+30 z-13$ is a cubic polynomial.
Solve $f(z)=0$, if $2+3 i$ is a root.

$$
\begin{aligned}
& z^{2}-(\text { Sum of roots }) z+(\text { Product Roots }) \\
\Rightarrow & z^{2}-(2+3 i+2-3 i) z+(2+3 i)(2-3 i) \\
\Rightarrow & z^{2}-4 z+13 \text { is a factor of the cubic equation }
\end{aligned}
$$

$$
2 z^{3}-9 z^{2}+30 z-13=0
$$

$$
(2 z-1)\left(z^{2}-4 z+13\right)=0
$$

$$
\Rightarrow 2 z-1=0 \quad \text { or } \quad z^{2}-4 z+13=0
$$

$$
\Rightarrow 2 z=1 \quad \text { or } \quad z=2 \pm 3 i
$$

$$
\Rightarrow z=\frac{1}{2}
$$

$$
\begin{aligned}
& (-) 2 z^{3}{ }^{(+)} 8 z^{2} \\
& -z^{2} / 2+30 z-13 /
\end{aligned}
$$

b) Forming Quadratic Equation when given Roots:

Notes:

> To find the quadratic equation from given complex roots, we use the formula below (which needs to be known).
> If the quadratic equation has real roots, then one root will always be a conjugate of another. (Conjugate Root Theorem)

Example: Form a quadratic equation where one root is $3-4 i$,
giving your answer in the form $z^{2}+b z+c=0$, where $b, c \in Z$.

- Using the conjugate root theorem, if one root is $3-4 i$ then the other root has to be $3+4 i$

$$
\begin{aligned}
& z^{2}-(\text { Sum of roots }) z+(\text { Product Roots })=0 \\
\Rightarrow> & z^{2}-(3-4 i+3+4 i) z+(3-4 i)(3+4 i)=0 \\
\Rightarrow & z^{2}-6 z+25=0
\end{aligned}
$$

d) Solving Equations with Complex Coefficients:

- Remember: the conjugate root theorem doesn't apply

Example: $1+2 i$ is a root of the equation $z^{2}-(2-i) z+7-$ $i=0$. Find its other root.

Method 1

$$
\begin{aligned}
& Z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \Rightarrow z=\frac{(2-i) \pm \sqrt{(-(2-i))^{2}-4(1)(7-i)}}{2(1)} \\
& \Rightarrow Z=\frac{2-i \pm \sqrt{-25}}{2} \\
& \Rightarrow Z=\frac{2-i \pm 5 i}{2} \\
& \Rightarrow Z=\frac{2+4 i}{2} \text { or } z=\frac{2-6 i}{2} \\
& \Rightarrow z=1+2 i \text { or } z=1-3 i
\end{aligned}
$$

Method 2

- Let unknown root $=a+b i$.
- We know that any quadratic equation will be given by:

$$
z^{2}-(\text { Sum of roots }) z+(\text { Product Roots })=0
$$

- So, the sum of the roots must be equal to $2-i$:

$$
\text { Sum of Roots }=1+2 i+a+b i=(1+a)+(b+2) i
$$

- We can now match up the real and imaginary parts to form some equations:

$$
\begin{gathered}
1+a=2 \quad \text { and } \quad b+2=-1 \\
\Rightarrow a=1 \quad \text { and } \quad b=-3 \\
\Rightarrow z=1-3 i
\end{gathered}
$$

- Note that we could also have used the product of the roots being equal to ($7-i$) to find a and b.

5) Polar Form/DeMoivre's Theorem:

a) Writing Complex Numbers in Polar Form:

Steps:

1) Draw a rough sketch of the complex number.
2) Calculate the value of r.
3) Calculate the value of θ, paying attention to the diagram.
4) Write down the polar form.

$r(\cos \theta+i \sin \theta)$, where $r=|x+i y|$

Example: Write -3-3i in polar form.
Step 1: Rough sketch of the complex number.

Step 2: Calculate the value of r.

$$
\begin{aligned}
& r^{2}=(3)^{2}+(3)^{2} \\
& \Rightarrow r=\sqrt{18}=3 \sqrt{2}
\end{aligned}
$$

Step 3: Calculate the value of A and then θ.

$$
\tan A=\frac{O P P}{A D J}=\frac{3}{3} \Rightarrow A=45^{\circ} \text { or } \frac{\pi}{4} \text { radians }
$$

$\Rightarrow \theta=45^{\circ}+180^{\circ}$ or $\frac{\pi}{4}+\pi$
$\Rightarrow \theta=225^{\circ}$ or $\frac{5 \pi}{4}$ radians
Step 4: Write down the polar form.
$\Rightarrow z=3 \sqrt{2}(\cos 225+i \sin 225)$ or $z=3 \sqrt{2}\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right)$

d) Using DeMoivre to solve complex equations:

Steps:

1) Rearrange/manipulate to get z on its own.
2) Convert the complex number in brackets to polar form.
3) Rewrite polar form in general polar form.
4) Apply DeMoivre's Theorem.
5) Fill in values of $n=0,1,2 \ldots$... to get the correct number of roots.
6) Check with a quick sketch that all solutions spread evenly around 360° i.e. they should have equal angles between them Example: Use DeMoivre's Theorem to solve $z^{2}=1+\sqrt{3} i$.
Step 1: Rearrange/manipulate to get z on its own.

$$
z^{2}=1+\sqrt{3} i \Rightarrow z=(1+\sqrt{3} i)^{1 / 2} \quad \text { (taking the }
$$

square root of both sides and $\sqrt{x}=x^{1 / 2}$)
Step 2: Convert the complex number in brackets to polar form.

$$
1+\sqrt{3} i=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)
$$

Step 3: Rewrite polar form in general polar form.
$2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$

$$
=2\left(\cos \left(\frac{\pi}{3}+2 n \pi\right)+i \sin \left(\frac{\pi}{3}+2 n \pi\right)\right)
$$

Step 5: Fill in values of $n=0,1,2 \ldots$ to get all the roots.
When $n=0 \Rightarrow z=2^{1 / 2}\left(\cos \left(\frac{\pi+6(0) \pi}{6}\right)+\right.$
$\left.+i \sin \left(\frac{\pi+6(0) \pi}{6}\right)\right)$

$$
=\sqrt{2}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)=\sqrt{2}\left(\frac{\sqrt{3}}{2}+i \frac{1}{2}\right)=\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2} i
$$

When $n=1 \Rightarrow z=2^{1 / 2}\left(\cos \left(\frac{\pi+6(1) \pi}{6}\right)+\right.$
$\left.+i \sin \left(\frac{\pi+6(1) \pi}{6}\right)\right)$
$=\sqrt{2}\left(\cos \frac{7 \pi}{6}+i \sin \frac{7 \pi}{6}\right)=\sqrt{2}\left(-\frac{\sqrt{3}}{2}-i \frac{1}{2}\right)=-\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2} i$

b) DeMoivre's Theorem:

- If $z=r(\cos \theta+i \sin \theta)$

c) Using DeMoivre to evaluate large powers:

Example: Write $(1+i)^{8}$ in the form $a+b i$, where $a, b \in R$.
Step 1: Rough sketch of the complex number $1+i$:

Step 2: Calculate the value of r.

$$
r^{2}=(1)^{2}+(1)^{2} \Rightarrow r=\sqrt{2} \quad(\text { Pyt Thm })
$$

Step 3: Calculate the value of θ.
$\tan \theta=\frac{O P P}{A D J}=\frac{1}{1} \Rightarrow \theta=\tan ^{-1} \frac{1}{1}=45^{\circ}$ or $\frac{\pi}{4}$ radians
Step 4: Write down the polar form.
$\Rightarrow z=\sqrt{2}(\cos 45+i \sin 45)$ or $z=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$
Step 5: Apply DeMoivre's Theorem..
$(1+i)^{8}=\left(\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right)^{8}$ (filling in the polar form of $1+i$)
$\left.=(\sqrt{2})^{8}\right)\left(\cos \frac{8 \pi}{4}+i \sin \frac{8 \pi}{4}\right)$ (as $z^{n}=r^{n}(\cos n \theta+$ $i \sin n \theta)$)

$$
=16(\cos 2 \pi+i \sin 2 \pi)=16(1+0 i)=16
$$

e) Using DeMoivre to prove trigonometric identities:

Example: Use DeMoivre's Theorem to prove the identity $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$.
$>$ In this example, we are interested in $\cos 3 \theta$, so we will use the expansion of $(\cos \theta+i \sin \theta)^{3}$:

$$
(x+y)^{3}=1 x^{3}+3 x^{2} y+3 x y^{2}+1 y^{3}
$$

$\Rightarrow(\cos \theta+i \sin \theta)^{3}=\cos ^{3} \theta+3 \cos ^{2} \theta(i \sin \theta)+3 \cos \theta(i \sin \theta)^{2}+$ $(i \sin \theta)^{3}$
$\Rightarrow(\cos \theta+i \sin \theta)^{3}=\cos ^{3} \theta+3 \cos ^{2} \theta \sin \theta i+3 \cos \theta i^{2} \sin ^{2} \theta+$ $i^{3} \sin ^{3} \theta$
$>$ We know $i^{2}=-1$ and $i^{3}=-i$
$\Rightarrow>(\cos \theta+i \sin \theta)^{3}=\cos ^{3} \theta+3 \cos ^{2} \theta \sin \theta i-3 \cos \theta \sin ^{2} \theta-$ $\sin ^{3} \theta i$
$>\quad$ And then we group the real and imaginary parts together on the right-hand side:
$(\cos \theta+i \sin \theta)^{3}=\left(\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta\right)+\left(3 \cos ^{2} \theta \sin \theta\right.$

$$
\left.-\sin ^{3} \theta\right) i
$$

$>$ We now use DeMoivre's Theorem on the expression on the left-hand side above:
$\Rightarrow>\cos 3 \theta+i \sin 3 \theta=\left(\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta\right)+\left(3 \cos ^{2} \theta \sin \theta-\right.$ $\left.\sin ^{3} \theta\right) i$
> We now can equate the real/imaginary parts on both sides, depending on what we are looking for i.e. if we want $\cos 3 \theta$, we equate the real parts and if we want $\sin 3 \theta$ we equate the imaginary parts

Real $=$ Real

$$
\Rightarrow \cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta
$$

$>$ We usually need to use some trig identities, which we looked at last year, to finish from here:
$\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta\left(1-\cos ^{2} \theta\right) \quad\left(\right.$ as $\left.\sin ^{2} \theta+\cos ^{2} \theta=1\right)$
$\Rightarrow \cos 3 \theta=\cos ^{3} \theta-3 \cos \theta+3 \cos ^{3} \theta$
$\Rightarrow \cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta \quad$ Q.E.D.
6) Transformations:

