- > Chapter 8: Difference Equations
- > Topic 37: Recap on JC Patterns
- Went through all this page on the board getting them to work with me at the back of their copies.

- Linear Patterns from JC:
- A linear sequence of numbers is a list of numbers where there is a common difference between each term.
 - o E.g. 3, 8, 13, 18, 23......which has a common difference of +5.
- In Junior Cycle, we learned how to find the General Term (Tn) of a linear sequence.

Step 1: Multiply the common difference by 'n'.....in the sequence above: 5n

Step 2: See what needs to be added or subtracted to 5n to get each of the terms in the sequence......in the sequence above: -2

Step 3: Write the General Term $T_n = 5n - 2$.

- Once we had the general term, there were two useful things that we were able to do:

	<u> </u>
Finding any term in the sequence	Finding the term number of a value
For example, to find the 50 th term:	For example, what term is 568?
T _n = 5n - 2	5n - 2 = 568
=> T _n = 5(50) - 2	=> 5n = 570
= 250 - 2	=> n = 114
= 248	=> the 114 th term is 568

- Quadratic Patterns from JC:
- We also learned in Junior Cycle about Quadratic Sequences.
- A quadratic sequence is a list of numbers where the second difference between each term is the same every time.
 - E.g. 4, 7, 12, 19, 28, 39.....which has first differences of +3, +5, +7, +9.....and a second difference of +2.
- To find the General Term of a quadratic sequence we:

Step 1: Let the General Term $T_n = an^2 + bn + c$.

Step 2: The second difference represents 2a, so halving the second difference gave us a value for a.....in the sequence above, the second difference is +2, so 'a' would be 1.

Step 3: Use two of the terms in the sequence to make two simultaneous equations, which we solve to find 'b' and 'c'......

 $T_n = an^2 + bn + c$

$$T_2 = (2)^2 + b(2) + c = 7$$

=> 4 + 2b + c = 7
=> 2b + c = 3.....Eqn 1
 $T_3 = (3)^2 + b(3) + c = 12$
=> 9 + 3b + c = 12
=> 3b + c = 3.....Eqn 2

Solving Equations 1 and 2 gives b = 0 and c = 3

$$\Rightarrow$$
 T_n = n² + (0)n + 3

$$\Rightarrow$$
 T_n = $n^2 + 3$

Note: An alternative method to find Tn of a Quadratic Sequence is use three terms and form three equations in a, b and c and solve for those values then.

- If a sequence is such that the third difference between its terms is the same every time, then that is known as a cubic sequence.

E.g. 11, 31, 69, 131, 223.....

- > Topic 38: Arithmetic Sequences/Series
 - In your LC Maths course, the term we use to describe linear sequences is Arithmetic Sequences.
 - We use a formula at senior cycle to help us find the General Term of this type of sequence quickly:

 $T_n = a + (n - 1)d$ See pg22
Tables Book

where 'a' is the 1st term and 'd' is the common difference

- If we add together the terms of an arithmetic sequence, we get an Arithmetic Series.
- It can be useful to be able to find the sum of the terms of an arithmetic series.
- We use a formula to help us find the sum of the first n terms:

- Example: A sequence is 3, 9, 15, 21, 27......
 - i) Find the 60^{th} term. ii) Find the sum of the first 60 terms. iii) What term is the first term to be bigger than 10000?

Solution:

i) Firstly, we will find the General Term:

- So, now we can find the 60th term:

$$T_{60} = 6(60) - 3$$

= 360 - 3
= 357

ii) This time we need to use the S_n formula:

$$S_n = \frac{n}{2} \{ 2a + (n-1)d \}$$

$$= \frac{60}{2} \{ 2(1) + (60 - 1)(3) \}$$

$$= 30\{2 + 177\}$$

$$= 5370$$

iii) To find this term, we need to solve $T_{n} \, {\raisebox{-.3ex}{>}}\, 10000$

=> the 1668th term will be the first term to be bigger than 10000

Day 1: Classwork Questions: Sheet: Exercise 1 Qs 4/5/9 and Exercise 2 Qs 1(ii)(vi)/4 and then give Pg 146 Ex 8A Qs 2/3/5 for HW to finish also

> Topic 39: Geometric Sequences:

- A Geometric sequence is a set of numbers where each term is found by multiplying the previous term by the same number, known as the common ratio.

 E.g. 10, 30, 90, 270.......
- The common ratio is denoted 'r'.
- We also use a formula to help us find the General Term of this type of sequence:

where 'a' is the 1st term and 'r' is the common ratio.

- Similarly, a Geometric Series is a series where the terms of a Geometric Sequence are added together.
- It can be easily shown that the sum of the first n terms of a Geometric Series can be found using the formula:

$$S_n = \frac{a(1-r^n)}{1-r} \quad \text{if } r < 1 \text{ or } S_n = \frac{a(r^n-1)}{r-1} \text{ if } r > 1$$
See pg22
Tables Book

where 'a' is the 1^{st} term and 'r' is the common ratio.

- In the specific case of an infinite Geometric series, the formulae above simplify to:

$$S_{\infty} = \frac{a}{1 - r}$$

Classwork Questions: Questions from Sheet on Geo S Ex 4 Qs 1(ii)(iv)(v)(vi)/2(ii)(iv)/3 and Ex 5 Qs 1(ii)/2(ii)

> Topic 40: Recurrence Relations

- A recurrence relation is a sequence which is defined differently to how previous sequences we have come across are defined.
- Up to now, the General Term described any term in terms of 'n'.
- In a recurrence relation a sequence is defined showing how any term is connected to the previous term.
- Examples of recurrence relations would be:

i)
$$T_n = 3T_{n-1}$$

Any term = 3 times the previous term

ii)
$$T_{n+1} = T_n - 4$$

Any term = the previous term less 4

Any term = half the previous term less 3

iii) $u_{n+1} = \frac{1}{2}u_n - 3$

• Example: Pg 149 Ex 8B Q5

A sequence $T_1, T_2, T_3, T_4, T_5, T_6$ is defined by the recurrence relation $T_{n+1} = \frac{1}{4}T_n$, for $n \in \mathbb{N}$ where $T_1 = 144$.

- i) Write down the first four terms.
- ii) Find S_{∞} the sum of the entire series.

Solution:

- i) Firstly, the key information we need is the recurrence relation itself $T_{n+1} = \frac{1}{4}T_n$, which tells us that any term in this sequence is a quarter of the previous term.
- We were also given $T_1 = 144$, so the next term will be $\frac{1}{4}(144) = 36$.
- The third term will be $\frac{1}{4}(36) = \frac{9}{4}$ and the fourth term will be $\frac{1}{4}(9) = \frac{9}{4}$

ii)

- Let's start by writing out the sequence and identifying what type it is:

- This is a Geometric Sequence with a = 144 and $r = \frac{1}{4}$.
- To find S_{∞} , we use the formula above for the sum of an infinite Geometric sequence:

$$S_{\infty} = \frac{a}{1 - r}$$

$$\Rightarrow S_{\infty} = \frac{144}{1 - \frac{1}{4}} = \frac{144}{\frac{3}{4}} = 192$$

♣ Not enough in this lesson, so went through Example 1 on next page at the end of this lesson and did both examples then in the next lesson.

Classwork Questions: Pg 149 Ex 8B Qs 2/3/7/8/10

> Topic 41: First Order Difference Equations

- We saw in the previous topic that when we are given a recurrence relation, we have to go through the process of working out the previous term if we want to know ANY term in the sequence.
- This can be a fairly time-consuming process, if for example, we wanted to know the 5000th term of a sequence, as we'd have to work out the previous 4999 terms first.
- For this reason, it is very useful if we can work out the General Term from a recurrence relation.
- In order to do this, we have to learn how to solve a difference equation.

- First Order Difference Equations:
 - These difference equations are ones where each term is defined in terms of one previous term. e.g. $T_{n+1}=\frac{1}{4}T_n-3$
- Example 1: Pg 151 Ex 8C Q3
 - i) Solve the difference equation $u_n = 3 + 2u_{n-1}$ given that $u_0 = 1$.
 - ii) As $n \to \infty$, which of these is true? A: u_n gets smaller and smaller. B: u_n gets bigger and bigger. C: u_n tends to a finite limit k.

Solution:

- The strategy to solve this type is to sub in increasing values for n starting at 1, and see if we can spot a pattern to link u_n and the term we've been given (in this example u_0):

n = 1	n = 2	<u>n = 3</u>
$u_n = \overline{3 + 2u_{n-1}}$	$u_n = \overline{3 + 2u_{n-1}}$	$u_n = \overline{3 + 2u_{n-1}}$
$\Rightarrow u_1 = 3 + 2u_0$	$\Rightarrow u_2 = 3 + 2u_1$	$\Rightarrow u_3 = 3 + 2u_2$
$\Rightarrow u_1 = 3 + 2(1)$	$\Rightarrow u_2 = 3 + 2(3 + 2(1))$	$\Rightarrow u_3 = 3 + 2(3 + 2(3) + 2^2(1))$
	$\Rightarrow u_2 = 3 + 2(3) + 2^2(1)$	$\Rightarrow u_3 = 3 + 2(3) + 2^2(3) + 2^3(1)$

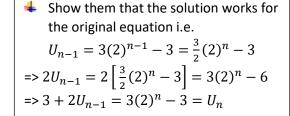
- Hopefully, you can now spot from looking at u_1 , u_2 and u_3 above that
 - a) the terms in red form a pattern and are of the form $2^{n}(1)$
 - b) the terms in blue form a geometric series with a=3 and r=2, so we can find the sum of that series using our formula from the first topic:

$$S_{n} = \frac{a(r^{n}-1)}{r-1}$$

$$\Rightarrow S_{n} = \frac{3((2)^{n}-1)}{2-1}$$

$$\Rightarrow S_{n} = \frac{3((2)^{n}-1)}{1}$$

$$\Rightarrow S_{n} = 3(2)^{n}-3$$



- So, combining the two gives us: $1(2)^n + 3(2)^n 3$.
- And finally, adding together the like terms gives us our final solution: $4(2)^n-3$

ii)

- As we now know the General Term, we can write out the first few terms of the sequence: $u_1 = 4(2^1) 3 = 5$, $u_2 = 4(2^2) 3 = 13$, $u_3 = 4(2^3) 3 = 29$, $u_4 = 4(2^4) 3 = 61$ => Sequence is: 5, 13, 29, 61......
- We can see from the sequence above that the distance between the terms is increasing as we add on more terms, so u_n is just going to get bigger and bigger as $n \to \infty$.

• Example 2: Pg 151 Ex 8C Q4

Savani has \leq 500 in her savings account. She decides that, now that she has a new job, she will put \leq 1000 on January 1st every year into her savings account. The bank offers 1% compound interest per annum.

- i) Show that the amount in her savings account after n years (A_n) is determined by the difference equation $A_n = 1.01A_{n-1} + 1000$.
- ii) Given that $A_0 = 500$, solve this difference equation.
- iii) How much will she have in her account in 20 years' time?

Solution:

- i) If she has 'x' euro in her account at the start of ANY year, then she will have 1.01x at the end of the year as the bank adds 1% compound interest.
- She then adds in €1000 at the start of the next year.
- So, at the end of ANY year she will have 1.01 of what she had the previous year plus an additional €1000 => $A_n = 1.01A_{n-1} + 1000$ Q.E.D
- ii) As before,

<u>n = 1</u>	<u>n = 2</u>	n = 3
$A_n = 1.0\overline{1A_{n-1}} + 1000$	$A_n = 1.01A_{n-1} + 1000$	$A_n = 1.01A_{n-1} + 1000$
$\Rightarrow A_1 = 1.01A_0 + 1000$	$\Rightarrow A_2 = 1.01A_1 + 1000$	$= A_3 = 1.01A_2 + 1000$
$A_1 = 1.01(500) + 1000$	$\Rightarrow A_2 = 1.01(1.01(500) + 1000) + 1000$	$= 1.01((1.01^2)(500) + 1.01(1000) + 1000) + 1000$ = $(1.01^3)(500) + (1.01^2)1000 + (1.01)1000 + 1000$
	$A_2 = (1.01^2)(500) + 1.01(1000) + 1000$	

- So hopefully, we see the pattern again......
 - The red terms being $(1.01^n)(500)$ and the blue terms being a Geometric Series with a = 1000 and r = 1.01.
- We can find the sum of this series using our formula:

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$\Rightarrow S_n = \frac{1000((1.01)^n - 1)}{1.01 - 1}$$

$$\Rightarrow S_n = \frac{1000((1.01)^n - 1)}{0.01}$$

$$\Rightarrow S_n = 100,000((1.01)^n - 1)$$

Let them try this first and then follow in behind on the board with the solution.

- So, our solution will be: $(1.01^n)(500) + 100,000((1.01)^n 1)$. = $500(1.01^n) + 100,000(1.01)^n - 100,000$
 - $\Rightarrow A_n = 100,500(1.01)^n 100,000$
- iii) To calculate how much she will have after 20 years, we just have to sub in n = 20:

$$A_n = 100,500(1.01)^n - 100,000$$

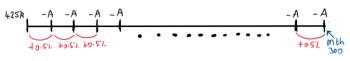
$$A_{20} = 100,500(1.01)^{20} - 100,000$$

$$\Rightarrow A_{20} = \underbrace{22,629.10}$$

Day 1: Classwork Questions: Pg 151 Ex 8C Qs 1/2/5(a)

Day 2: Classwork Questions: Pg 152 Ex 8C Qs 5(b)/6/8/9

• Interest Repayments:



• Example: Pg 154 Ex 8D Q3

A couple borrows €425,000 to buy a house. They will repay the same amount (A) each month for 25 years. The Building Society charges a monthly interest rate of 0.5%.

- i) How many monthly repayments will there be?
- ii) If D_n is the amount of debt owing after n months write down a difference equation in D_n .
- iii) Solve the difference equation.
- iv) Find A to the nearest euro.

Solution:

- i) The number of monthly repayments over 25 years will be $25 \times 12 = 300$.
- ii) In ANY month, the couple will owe 1.005 of what they owe the previous month D_{n-1} (as the interest rate is 0.5%) and then they will make a repayment of A
 - => D_n will be: $1.005(D_{n-1}) A$
- iii) We now solve as before:

$$\begin{array}{|c|c|c|c|c|c|}\hline & \underline{n=1} \\ D_n = 1.005D_{n-1} - A \\ \Rightarrow D_1 = 1.005D_0 - A \\ \Rightarrow D_2 = 1.005(1.005D_0 - A) \\ \Rightarrow D_2 = 1.005^2D_0 - 1.005A - A \\ \Rightarrow D_3 = 1.005^3D_0 - 1.005^2A - 1.005A - A \\ \Rightarrow D_3 = 1.005^3D_0 - 1.005^2A - 1.005A - A \\ \Rightarrow D_3 = 1.005^3D_0 - 1.005^2A - 1.005A - A \\ \Rightarrow D_3 = 1.005^3D_0 - 1(1.005^2A + 1.005A + A) \\ \end{array}$$

- So the pattern this time is......
 - The first term being $(1.005^n)D_0$ and the terms in the brackets being a Geometric Series with a = A and r = 1.005.
- Again, we can find the sum of this series using our formula:

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$\Rightarrow S_n = \frac{A((1.005)^n - 1)}{1.005 - 1}$$

$$\Rightarrow S_n = \frac{A((1.005)^n - 1)}{0.005}$$

$$\Rightarrow S_n = 200A((1.005)^n - 1)$$

- So, our solution will be: $D_n = (1.005^n)D_0 - 200A((1.005)^n - 1)$.

iv)

We know $D_0 = \text{€}425,000$ and n = 300 from part (i) and we also know that the debt will be repaid when $D_n = 0 \Rightarrow$

Classwork Questions: Pg Ex 8D Qs 1/2/5

Notes for board to introduce Topic 42:

e.g.s
$$T_{n+1} = 3T_n - 2T_{n-1}$$
 or $u_{n+2} - 2u_{n+1} + 3u_n = 0$

2 types:

- (i) Homogeneous (ii) inhomogeneous
- (i) Homogeneous:
- 2 theorems we need:

For characteristic equation $px^2 + qx + r = 0$ Different roots α and $\beta \Rightarrow u_n = l\alpha^n + m\beta^n$ Same roots α and $\alpha \Rightarrow u_n = l\alpha^n + mn\alpha^n$

- > Topic 42: Second Order Difference Equations
- Second Order Homogeneous Equations:
 - These difference equations are ones where each term is defined in terms of two previous terms. e.g. $T_{n+1} = 3T_n - \frac{3}{4}T_{n-1}$ or $u_{n+2} - 2u_{n+1} + 3u_n = 0$
 - Second order difference equations are called homogeneous, if they only contain T_n , T_{n+k} or T_{n-k} .
 - If they contain other terms other than those, they are known as inhomogeneous equations or non-homogeneous ones. E.g. $u_{n+2}-2u_{n+1}+3u_n-4=0$
 - The example above is non-homogeneous as it contains an extra constant of 4.
 - When solving homogeneous equations, we first solve what is known as the characteristic quadratic equation.
 - If the difference equation is: $u_{n+2} 2u_{n+1} + 3u_n = 0$ then the corresponding characteristic equation will be: $x^2 - 2x + 3 = 0$. (Note that the coefficients have to match in both equations).
 - There are two theorems we need then to solve the difference equation:

Difference Equation Theorem 1

If α and β are the two roots of the If α and α are the two equal roots of the characteristic equation $px^2 + qx + r = 0$, then the solution will be in the form:

$$u_n = l\alpha^n + m\beta^n$$

Difference Equation Theorem 2

characteristic equation $px^2 + qx + r = 0$, then the solution will be in the form:

$$u_n = l\alpha^n + mn\alpha^n$$

- Example 1: Pg 156 Ex 8E Q4 Solve $2u_{n+2} 11u_{n+1} + 5u_n = 0$ given $u_0 = 2$ and $u_1 = -8$. Solution:
 - First we form the characteristic equation and solve it:

 $2u_{n+2} - 11u_{n+1} + 5u_n = 0$ will have characteristic equation

$$2x^{2} - 11x + 5 = 0$$
=> $(2x - 1)(x - 5) = 0$
=> $x = \frac{1}{2}$ or $x = 5$

- Using Theorem 1 above with our two roots $a = \frac{1}{2}$ and b = 5, our solution will be in the form:

$$u_n = la^n + mb^n$$

$$\Rightarrow u_n = l(\frac{1}{2})^n + m(5)^n$$

Now we use the other information we were given in the question:

If
$$u_0 = 2$$
:
 $=> u_0 = l(\frac{1}{2})^0 + m(5)^0 = 2$
 $=> l + m = 2$ (as $(\frac{1}{2})^0$ and $(5)^0 = 1$)

If $u_1 = -8$:
 $=> u_1 = l(\frac{1}{2})^1 + m(5)^1 = -8$
 $=> \frac{1}{2}l + 5m = -8$
 $=> l + 10m = -16$ (multiplying by 2)

- We now solve the two simultaneous equations above giving l=4 and m=-2.
- So, the solution to our difference equation is: $u_n = 4(\frac{1}{2})^n 2(5)^n$.
- Example 2: Pg 156 Ex 8E Q9 Solve $u_{n+1} 4u_n + 4u_{n-1} = 0$ given $u_0 = -1$ and $u_1 = 8$. Solution:
 - Again, we start by forming the characteristic equation and solving it:

 $u_{n+1} - 4u_n + 4u_{n-1} = 0$ will have characteristic equation

$$x^{2} - 4x + 4 = 0$$

 $(x - 2)(x - 2) = 0$
 $x = 2$ or $x = 2$

- Using Theorem 2 above with our two roots a = 2 and a = 2, our solution will be in the form:

$$u_n = la^n + mna^n$$

=> $u_n = l(2)^n + mn(2)^n$

- Using the other information given:

If $u_0 = -1$:	If $u_1 = 8$:
$\Rightarrow u_0 = l(2)^0 + m(0)(2)^0 = -1$	$\Rightarrow u_1 = l(2)^1 + m(1)(2)^1 = 8$
=> l = -1	$\Rightarrow 2l + 2m = 8$
	$\Rightarrow 2(-1) + 2m = 8$
	$\Rightarrow m = 5$

- So, the solution to our difference equation is: $u_n = -1(2)^n + 5n(2)^n$, which can be written in a tidier way if we factorise out the 2^n : $u_n = 2^n(5n-1)$.
- Day 1: Classwork Questions: Pg 156 Ex 8E Qs 1/2/6/8/11/12
- Day 2: Classwork Questions: Pg 156/157 Ex 8E Qs 14/16/19/21

- Second Order Inhomogeneous Equations:
 - Firstly, a reminder that inhomogeneous equations are ones of the form ones $u_{n+2} + u_{n+1} + u_n = \pm A$ where A is some other function not related to u_n .
 - To solve inhomogeneous equations there are two parts to the solution: the particular solution and the complementary solution.
 - For the particular solution, we use the table below, depending on what form the righthand side of the equation is.

Туре	Particular Solution
Constant e.g. 7	$u_n = a$
Linear e.g. $3n-5$	$u_n = an + b$
Quadratic e.g. $3n^2 + 5n - 2$	$u_n = an^2 + bn + c$
Exponential: e.g. 3^n	$u_n = a(3^n)$

Example 1: Pg 160 Ex 8F Q4

Solve the difference equation $T_{n+2}-4T_{n+1}+4T_n=7n-14$ given $T_0=1$ and $T_1=15$. Solution:

- We begin by noticing that the right-hand side of the equation above is 7n - 14, which is a linear expression, so our particular solution from the table above will be of the form

$$T_n = an + b$$

- We now need to get expressions for T_{n+1} and T_{n+2} :

$$T_{n+1} = a(n+1) + b = an + a + b$$

 $T_{n+2} = a(n+2) + b = an + 2a + b$

- Subbing into our initial equation gives:

$$T_{n+2} - 4T_{n+1} + 4T_n = 7n - 14$$

=> $an + 2a + b - 4(an + a + b) + 4(an + b) = 7n - 14$
=> $an - 2a + b = 7n - 14$

- If we now compare the left-hand side to the right side, it can be seen that a=7 and -2a+b=-14.
- Subbing in our value of a gives: $-2(7) + b = -14 \Rightarrow b = 0$
- So, our particular solution in this case is: $T_n = an + b = 7n$.
- We now find the complementary solution by solving the homogeneous equation $T_{n+2}-4T_{n+1}+4T_n=0$, which we learned how to do in the last section:

Characteristic Equation to solve: $x^2 - 4x + 4 = 0$

=>
$$(x-2)(x-2) = 0$$

=> $x-2=0$ or $x-2=0$
=> $x=2$ or $x=2$

- Using Theorem 2 above with our two roots a = 2 and a = 2, our solution will be in the form:

$$T_n = la^n + mna^n \implies T_n = l(2)^n + mn(2)^n$$

- To get the final solution, we add the particular solution and the complementary solution: $T_n = l(2)^n + mn(2)^n + 7n$

- We finally evaluate the values of l and m as before:

If
$$T_0 = 1$$
:

 $\Rightarrow T_0 = l(2)^0 + m(0)(2)^0 + 7(0) = 1$
 $\Rightarrow l = 1$

If $T_1 = 15$:

 $\Rightarrow T_1 = l(2)^1 + m(1)(2)^1 + 7(1) = 15$
 $\Rightarrow 2l + 2m + 7 = 15$
 $\Rightarrow 2m = 6$
 $\Rightarrow m = 3$

- So, the final solution to our difference equation is: $T_n = 1(2)^n + 3n(2)^n + 7n$, which can be written in a tidier way if we factorise out the 2^n : $u_n = 2^n(3n+1) + 7n$.

Classwork Questions: Pg 160 Ex 8F Qs 2/7/1 and then try Q6

• Example 2:

Solve the difference equation $2u_{n+2} - u_{n+1} - 3u_n = 3^n$ given $u_0 = 3$ and $u_1 = -5$. Solution:

- This time the right-hand side is an exponential expression, so our solution will be of the form i.e. $u_n = a.3^n$.
- Again, we begin by getting expressions for u_{n+1} and u_{n+2} :

$$u_{n+1} = a.3^{(n+1)} = a.3^n.3^1 = 3a.3^n$$

 $u_{n+2} = k.3^{(n+2)} = a.3^n.3^2 = 9a.3^n$

- Subbing these expressions into the equation we were asked to solve initially gives:

$$2u_{n+2} - u_{n+1} - 3u_n = 3^n$$

=> $2(9a.3^n) - (3a.3^n) - 3(a.3^n) = 3^n$

- If we factorise out the 3^n on the left-hand side:

$$3^{n}(18a - 3a - 3a) = 3^{n}$$

=> $3^{n}(12a) = 3^{n}(1)$

- For this to be true 12a must be equal to 1

=>
$$12a = 1$$

=> $a = \frac{1}{12}$

- So, our particular solution is: $u_n = \frac{1}{12} \cdot 3^n$.
- As in example 1, we now must find the complementary solution by solving the associated characteristic equation:

$$2x^{2} - x + 3 = 0$$

 $\Rightarrow (2x - 3)(x + 1) = 0$
 $\Rightarrow x = \frac{3}{2}$ or $x = -1$

- As we have two roots our complementary solution will be in the form $u_n = la^n + mb^n$ where a = $\frac{3}{2}$ and b = -1: $= u_n = l(\frac{3}{2})^n + m(-1)^n$
- We now combine the particular and complementary solutions again to get the full solution:

$$u_n = l(\frac{3}{2})^n + m(-1)^n + \frac{1}{12}.3^n$$

- Using the other information given in the question to find l and m:

If
$$u_0 = 3$$
:

$$= u_0 = l(\frac{3}{2})^0 + m(-1)^0 + \frac{1}{12} \cdot 3^0 = 3$$

$$= l + m = 3 - \frac{1}{12}$$

$$= 12l + 12m = 35$$
If $u_1 = -5$:

$$= u_1 = l(\frac{3}{2})^1 + m(-1)^1 + \frac{1}{12} \cdot 3^1 = -5$$

$$= \frac{3}{2}l - m + \frac{1}{4} = -5$$

$$= 6l - 4m + 1 = -20$$

$$= 6l - 4m = -21$$

=>6l-4m=-21- Solving these two simultaneous equations gives: $l=-\frac{14}{15}$ and $m=\frac{77}{20}$, so our final solution will be: $u_n=(-\frac{14}{15})\left(\frac{3}{2}\right)^n+(\frac{77}{20})(-1)^n+\frac{1}{12}\cdot 3^n$

Day 1: Classwork Questions: Solve: $u_{n+2}-u_{n+1}-6u_n=2^n$ given $u_0=2$ and $u_1=3$ and then try Qs 3/8 on Pg 160

Day 2: Classwork Questions: Pg 160 Ex 8F Qs 14/15/16 Revision Questions and Test

Solution:

$$u_n = \frac{8}{5}(3)^n + \frac{13}{20}(-2)^n - \frac{1}{4}(2)^n$$