Q<u>1</u>

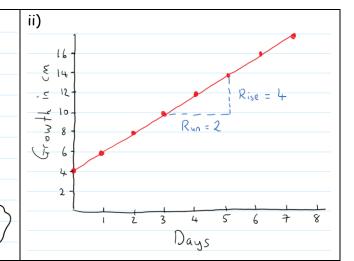
A linear pattern of numbers is a sequence of numbers that increases/decreases by the same amount every time.

e.g. 7, 12, 17, 22 +5 +5 +5

b)

Method 1: (Table)

Tern Number	Pattern	Term
	7(1)-3	4
2	7(2)-3	1)
3	7(3)-3	18
-		
·-		
n	7(n)-3/	


$$T_n = 7n - 3$$

$$T_{1000} = 7(1000) - 3$$

= 7000 - 3
= 6997

1)	
Write out a few te	rms of the
sequence first - starts	at 4cm and
grows by 2cm each	dau
<i>y</i> - <i>y</i>)

We now use some letter instead of Trie. 'g' for growth

$$\Rightarrow g = 4 + 2n$$
 $\begin{cases} g = gnwth \text{ in } cm \\ n = no. \text{ of days} \end{cases}$

iii) $T_{\Lambda} = 30$ 4 + 2n = 30 2n = 30 - 4 2n = 26 2

 $\Omega = 13$

Slope =
$$\frac{Rise}{Run}$$

= $\frac{4}{2}$

The slope of the line shows us how much the plant is growing per day or the rate of growth. Rate of growth = 2cm/day.

Q2(b) Halo: Fixed Charge E6 + E2 per km = C = 6 + 2k where C = cost and k = no. of kilometres Uber: Fixed Charge E4 + E3 per km \Rightarrow C = 4 + 3k C = cost, k = no. of kmii) 22 Uber 20 18 W 16 Halo 12 2 3 4 kilometres (iii From graph cost = (13 for Halo iv) From graph E20 would take you 5.5km with Uber. v) Point of Intersection on graph @ 2km Slopes of the lines give us how much each taxi company is charging per kilometre vii) For journeys shorter than 2km choose Uber because they are cheaper but for longer journeys it would cheaper to use Hab be

Q3(a)

<u>49(4)</u>
i)
Exponential > multiplying by 3 to go from term to term
$\Rightarrow 3, 9, 27, 81, 243, 729$
ii)
$\frac{3}{46}, \frac{9}{18}, \frac{2}{18}, \frac{2}{18}, \frac{2}{18}, \frac{7}{162}$ \Rightarrow $\frac{2}{10}$ difference not constant
+12 +36 +108 +324
iii)
Not quadratic because 2 nd difference is not a constant
iv)
Increases slowly at the start but then increases rapidly

Q3(b)

(i)
$$T_{\Lambda} = 2\Lambda^{2} - 1$$

$$T_{1} = 2(1)^{2} - 1 = 1$$

$$T_{2} = 2(2)^{2} - 1 = 7$$

$$T_{3} = 2(3)^{2} - 1 = 17$$

$$T_{4} = 2(4)^{2} - 1 = 31$$

Q3(c)

ام	Ξ	an'	+	bλ	+	C
2	7	,	4,	23	3	
+	ノ へ 5	++	\ T	-9		
	+2		+ 2			

$$2a = +2$$

$$\Rightarrow a = 1$$

$$\Rightarrow T_a = In^2 + bn + c$$

Solving
$$I\&II$$
:
$$I:b+c=1$$

$$I[-2b+c=-3]$$

$$-b=-2$$

$$b=2$$

$$\frac{T_1 = 2}{1(1)^2 + b(1) + c} = 2$$

$$1 + b + c = 2$$

$$b + c = 1$$
I

$$\frac{T_2 = 7}{1(2)^2 + b(2) + c} = 7$$

$$4 + 2b + c = 7$$

$$2b + c = 3 \text{ T}$$

$$\Rightarrow \boxed{T_n = n^2 + 2n - 1}$$

Q4(b)

(ii) If quadratic =) 2nd difference must be Same every time => lots of possible answers e.g. 3, 9, 17, 27, 3 +6 +8 +10 +12 +2 +2 +2

iv) the exponential one.

```
Q4(c)
```

p, 9, T

Common Diff = 3

lerms sum to 42

$$\Rightarrow P + q + r = 42 \bigcirc$$

We can put (A) and (B) into (C)

$$\Rightarrow$$
 p + (p+3) + (p+6) = 42

$$3p + 9 = 42$$

 $3p = 42 - 9$

$$\frac{3p}{3} = \frac{33}{3}$$

We know the common difference is +3

$$\Rightarrow$$
 If $p = 11 \Rightarrow q = 11 + 3 = 14$ and $r = 14 + 3 = 17$

alternatively we could do the following to find q and r:

We now sub p into A and B:

$$A: p+3=q$$
 $11+3=q$
 $11+6=r$

$$\begin{vmatrix} 1 + 3 = q \\ \Rightarrow \boxed{q = 14} \end{vmatrix}$$

$$\begin{vmatrix} 1 + 6 = r \\ \Rightarrow \boxed{r = 17} \end{vmatrix}$$