Topic 15: Coordinate Geometry of the Circle

1) The Basics:

a) Circle with Centre other than $(0,0)$

b) Circle with Centre (0,0):

Not in Tables but can find by subbing in $(0,0)$ for (h, k) in other formula on the left.

2) General Equation of a Circle:

Notes:

$>$ A circle with centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$ has the general equation:

$$
\sum x^{2}+y^{2}+2 g x+2 f y+c=0
$$

Example:
i) Write down the equation of the circle in the form $x^{2}+y^{2}+$ $2 g x+2 f y+c=0$ with centre $(-5,2)$ and radius 3 .
ii) Find the centre and radius of the circle with equation $x^{2}+$
$y^{2}-10 x+11 y+14=0$.
i) $r=\sqrt{g^{2}+f^{2}-c}$
$\Rightarrow 3=\sqrt{(5)^{2}+(-2)^{2}-c}$
$\Rightarrow 9=25+4-c \quad$ (squaring both sides)
$\Rightarrow c=20$
\Rightarrow Eqn: $x^{2}+y^{2}+2(5) x+2(-2) y+20=0$
$\Rightarrow x^{2}+y^{2}+10 x-4 y+20=0$
ii)The equation $x^{2}+y^{2}-10 x+11 y+14=0$ is in the form $x^{2}+$ $y^{2}+2 g x+2 f y+c=0$ so comparing both gives:

$$
\begin{array}{ll}
2 g=-10 & 2 f=11 \\
\Rightarrow g=-5 & f=\frac{11}{2}
\end{array}
$$

- Once we know g and f, we can work out the radius:

$$
\begin{aligned}
& r=\sqrt{g^{2}+f^{2}-c} \\
& r=\sqrt{(-5)^{2}+\left(\frac{11}{2}\right)^{2}-14} \\
& r=\sqrt{25+\frac{121}{4}-14} \\
& r=\sqrt{\frac{165}{4}}
\end{aligned}
$$

\Rightarrow Centre $=(-g,-f)=\left(5,-\frac{11}{2}\right)$ and Radius $=\sqrt{\frac{165}{4}}$

3) Points Inside, On or Outside a Circle:

Method 1:

Steps:

1. Write down the radius and centre of the circle.
2. Calculate distance from
the point to the centre.
3. Compare distance to
radius:

- If Distance < Radius $=>$ Point is Inside
- If Distance > Radius $=>$ Point is Outside
- If Distance $=$ Radius \Rightarrow P Point is On Circle

Method 2:

Steps:

1. Fill in point into equation of the circle.
2. Compare left hand side to right hand side.

- If LHS < RHS => Point is Inside
- If LHS $>$ RHS \Rightarrow Point is Outside
- If LHS = RHS => Point is On Circle

Example: Is the point (6, -2) in, on or outside the circle $(x-2)^{2}+(y+3)^{2}=25$

Method 1:

$R=\sqrt{25}=5$ Centre $=(2,-3)$
Dist from ($2,-3$) to $(6,-2)$:

$$
\begin{aligned}
& \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& \sqrt{(6-2)^{2}+(-2+3)^{2}}
\end{aligned}
$$

$$
\sqrt{17}=4.12
$$

Method 2:

$(x-2)^{2}+(y+3)^{2}=25$

$$
(6-2)^{2}+(-2+3)^{2}
$$

$$
=25
$$

$(4)^{2}+(1)^{2}=25$
$17<25$
=> INSIDE circle

$$
4.12<5
$$

=> INSIDE circle

4) Intersection of a Line and a Circle:

- Need to be able to find the points of intersection of a line and a circle.
- See Algebra Topic Section 8b

5) Tangents/Touching Circles:

a) Tangents:

Notes:

> Tangent: touches a circle at one point and is perpendicular to the radius at the point of contact.

Steps:

1. Find the centre and radius of the circle from the equation.
2. Let the slope of the tangent be ' m '.
3. Find the general equation of the tangent in the form $a x+$ by $+c=0$.
4. Find the perpendicular distance from the tangent to the centre, in terms of m.
5. Let the expression from step 4 equal to the radius and solve for m.
6. Fill in the values of ' m ' into the equation from step 3 and tidy up.

Example: Find the equations of two tangents from the point
$(5,-3)$ to the circle $x^{2}+y^{2}-4 x+8 y+12=0$.
Step 1: Find the centre and radius from the equation:

$$
\text { Centre }=(2,-4) \quad \text { Radius }=\sqrt{(-2)^{2}+(4)^{2}-12}=\sqrt{8}
$$

Step 2: Let the slope of the tangent be ' m '.
Step 3: General equation of the tangent in the form $a x+b y+c$ $=0$. - $(5,-3)$ is on the tangent so it's equation will be:

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& \Rightarrow y-(-3)=m(x-5) \\
& \Rightarrow y+3=m(x-5) \\
& \Rightarrow y+3=m x-5 m \\
& \Rightarrow m x-y-3-5 m=0
\end{aligned}
$$

Step 4: Perpendicular distance from the tangent to the centre ($2,-4$), in terms of m :

$$
\begin{aligned}
& d=\frac{|m(2)-1(-4)-3-5 m|}{\sqrt{(m)^{2}+(-1)^{2}}} \\
& \Rightarrow d=\frac{|2 m+4-3-5 m|}{\sqrt{m^{2}+1}} \\
& \Rightarrow d=\frac{|-3 m+1|}{\sqrt{m^{2}+1}}=\sqrt{8} \quad \text { (Step 5) } \\
& \Rightarrow 8=\frac{9 m^{2}-6 m+1}{m^{2}+1} \quad \text { (squaring both sides) } \\
& \Rightarrow 8\left(m^{2}+1\right)=9 m^{2}-6 m+1 \\
& \\
& \Rightarrow 8 m^{2}+8=9 m^{2}-6 m+1 \\
& \Rightarrow m^{2}-6 m-7=0 \\
& \Rightarrow(m-7)(m+1)=0 \\
& \\
& \Rightarrow m=7 \quad \text { or } \quad m=-1
\end{aligned}
$$

Step 6: Filling in our two values of m gives:

$$
\begin{array}{ll}
\text { If } \mathrm{m}=7: & \text { If } \mathrm{m}=-1: \\
m x-y-3-5 m=0 & m x-y-3-5 m=0 \\
7 x-y-3-5(7)=0 & -x-y-3-5(-1)=0 \\
7 x-y-38=0 & x+y-2=0
\end{array}
$$

b) Touching Circles:

Notes:

> As
If $r_{1}=$ the radius of the larger circle and $r_{2}=$ the radius of the smaller circle then the distance between their centres 'd' is given by

Example: Prove that the circles $s: x^{2}+y^{2}-16 y+32=0$ and $k: x^{2}+$ $y^{2}-18 x+2 y+32=0$ touch externally and find their point of contact.
> Firstly, we will write down the centre and radii of both circles: s : Centre $=(0,8)$, Radius $=\sqrt{32}=4 \sqrt{2} \quad$ k: Centre $=(9,-1)$, Radius $=\sqrt{50}=5 \sqrt{2}$
> Now we will calculate the distance between their centres using the distance formula:

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& \Rightarrow d=\sqrt{(9-0)^{2}+(-1-8)^{2}} \\
& \Rightarrow d=\sqrt{81+81} \\
& \Rightarrow d=\sqrt{162}=9 \sqrt{2}
\end{aligned}
$$

$>$ So, the circles must touch externally as $d=9 \sqrt{2}=4 \sqrt{2}+5 \sqrt{2}$.
> To find the point of contact, we can use another formula we learned about in TY for finding a point that divides a line segment up in a particular ratio (which in this case is $4 \sqrt{2}: 5 \sqrt{2}$ or 4:5

$$
\begin{aligned}
& \Rightarrow P=\left(\frac{b x_{1}+a x_{2}}{b+a}, \frac{b y_{1}+a y_{2}}{b+a}\right) \\
& \Rightarrow P=\left(\frac{5(0)+4(9)}{5+4}, \frac{5(8)+4(-1)}{5+4}\right) \\
& \Rightarrow P=\left(\frac{36}{9}, \frac{36}{9}\right)=(4,4)
\end{aligned}
$$

6) Problems in g, f and c :

Tips for solving circle problems:

1) Draw a diagram.
2) Find 3 equations because we have three unknowns i.e. g, f and c

3 common types of questions:

a) 3 points on a circle
b) 2 points on a circle and the centre on a line
c) 1 point on a circle, the centre on a line and radius length given

Example 1: A circle passes through the points $(7,-2),(1,2)$ and $(4,5)$. Find the equation of the circle.
$>$ Firstly, let's draw a rough sketch of the situation here

\rightarrow In this example, we have been given three points on the circle, so we can fill these into our general equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ as they are ON the circle:

$$
\begin{aligned}
(7,-2) & \Rightarrow(7)^{2}+(-2)^{2}+2 g(7)+2 f(-2)+c=0 \\
& \Rightarrow 14 g-4 f+c=-53 \ldots \ldots . \text { Eqn } A \\
(4,5) & \Rightarrow(4)^{2}+(-5)^{2}+2 g(4)+2 f(5)+c=0 \\
& \Rightarrow 8 g+10 f+c=-41 \ldots . . . \text { Eqn B } \\
(1,2) & \Rightarrow(1)^{2}+(2)^{2}+2 g(1)+2 f(2)+c=0 \\
& \Rightarrow 2 g+4 f+c=-5 E q n ~
\end{aligned}
$$

\rightarrow We solve the three equations A, B and C simultaneously to get:

$$
f=-\frac{6}{5}, g=-\frac{24}{5} \text { and } c=\frac{47}{5}
$$

$>$ Substitute these values back into the general equation above:

$$
x^{2}+y^{2}+2\left(-\frac{24}{5}\right) x+2\left(-\frac{6}{5}\right) y+\left(\frac{47}{5}\right)=0
$$

$>$ Finally, multiply through by 5 to kill the factions:

$$
\Rightarrow 5 x^{2}+5 y^{2}-48 x-12 y+47=0
$$

Example 2: A circle of radius length $\sqrt{20}$ contains the point (-1 , 3). Its centre lies on the line $x+y=0$. Find the equation of the two circles that satisfy these conditions.
$>$ A diagram of this problem is:

> Firstly, we're told the radius is $\sqrt{20}$, so:

$$
\sqrt{g^{2}+f^{2}-c}=\sqrt{20}
$$

$\Rightarrow g^{2}+f^{2}-c=20 \ldots$. Eqn $A \quad$ (squaring both sides)
\rightarrow Secondly, we're told $(-1,3)$ is on the circle, so:

$$
\begin{aligned}
& (-1,3) \Rightarrow(-1)^{2}+(3)^{2}+2 g(-1)+2 f(3)+c=0 \\
& \quad \Rightarrow-2 g+6 f+c=-10 \ldots \ldots . . \text { Eqn B }
\end{aligned}
$$

> And finally, we're told its centre is along the line $x+y=0$, so:

$$
\begin{aligned}
& (-g)+(-f)=0 \\
& \Rightarrow g=-f \ldots \text { Eqn } C
\end{aligned}
$$

$>$ To start solving, we can substitute equation C into equations A and B giving:

$$
\begin{array}{ll}
\text { A: }(-f)^{2}+f^{2}-c=20 & \text { B: }-2(-f)+6 f+c= \\
\Rightarrow 2 f^{2}-c=20 & \Rightarrow 8 f+c=-10
\end{array}
$$

-10
$>$ Use eqn A to get ' c ' on its own and substitute into eqn B :

$$
A: c=2 f^{2}-20
$$

$$
\Rightarrow \mathrm{B}: 8 f+2 f^{2}-20=-10
$$

$$
\Rightarrow \mathrm{B}: f^{2}+4 f-5=0 \quad \text { (dividing across by } 2 \text { and }
$$

tidying up)

$$
\begin{aligned}
& \Rightarrow(f+5)(f-1)=0 \\
& \Rightarrow f=-5 \quad \text { or } \quad f=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now substitute our values for } \mathrm{f} \text { into eqn } \mathrm{B} \text { to find ' } c \text { ': } \\
& \begin{array}{|l|l|}
\hline \text { If } f=-5 & \text { If } f=1 \\
\Rightarrow 8(-5)+c=-10 \Rightarrow c=30 & \Rightarrow 8(1)+c=-10 \Rightarrow c=-18 \\
\hline
\end{array}
\end{aligned}
$$

And using eqn C above, we can find the values of ' g ':

If $f=-5$ $\Rightarrow g=-(-5)=5$	If $f=1$ $\Rightarrow>$ \Rightarrow

\rightarrow So, the equations of the two circles will be:
$x^{2}+y^{2}+10 x-10 y+30=0$ and $x^{2}+y^{2}-2 x+2 y-18=$

