Topic 4: Algebra

1) The Basics:

a) Adding / Subtracting Algebraic Expressions:	b) Multiplying Expressions:
Notes:	Notes:
 We can only add / subtract 'like terms'. 'Like terms' are terms that have the same letter part or the same variables e.g. 5d and -2d are 'like terms' but 5d and 5d² are <u>NOT</u> 'like terms' 	 when multiplying we follow the order Signs, Numbers, Letters When multiplying the letters together we must remember the first law of indicesa^m x aⁿ = a^{m+n} i.e. Add the Powers Example 1: Multiplying Terms
Example 1:	4a ² x 2a ⁵ (Multiply signs(+).(+) = +) =8a ⁷ (Multiply Numbers & Add Powers)
4a + 5 + 2a - 3	Example 2: Removing Brackets
= 6a + 2	2(g + 4) = 2g + 8
Example 2:	5
	Example 3: Removing Brackets
$3x^2y - 4y^2 - x^2y - 3y + 2y^2$	(2x - 3)(x + 2) ("Split and Repeat")
$= 2x^2y - 2y^2 - 3y$	= 2x(x + 2) - 3(x + 2)
	$= 2x^2 + 4x - 3x - 6$
	$= 2x^{2} + x - 6$
c) Dividing Expressions:	
<u>Tip:</u> Can we factorise the numerator or the denominator? <u>Example:</u>	
$\frac{2x+6}{x^2-9} = \frac{2(x+3)}{(x+3)(x-3)} = \frac{2}{x-3}$	

2) Algebraic Fractions:

5) Factorising and Manipulation of Formulae:

<u>a) Factorising:</u>		b) Manipulation of F	<u>Formulae:</u>
1. Taking out the HCF (taking out)	what's common)	<u>Steps:</u>	
e.g.s		1) Get rid of any bra	ckets, fractions or square roots.
i) 2 <i>x</i> - 10	ii) $3x^2 - 18x$	2) Bring all terms wi	th the letter you want to the LHS and move
= 2(x-5)	= 3x(x-6)	everything else to th	ne RHS.
2. Grouping (always has 4 terms)		3) Factorise out the	letter you want (if necessary).
e.g.s		4) Divide both sides	to leave the letter you want on the LHS.
i) $ax + ay + bx + by$	ii) $3p - 3q - pk + kq$		
= a(x+y) + b(x+y)	= 3(p-q) - k(p-q)	Example: Write r, in	n terms of p and q.
= (x + y)(a + b)	= (p-q)(3-k)	p = p	
3. Quadratic (always has 3 terms x ²	² , x, a)	$\sqrt{r-q}$	
e.g.s		$\Rightarrow \left(\frac{p}{p} \right)^2 = (p)^2$	(Sauarina both sides to aet rid of $\sqrt{}$)
i) $x^2 + 5x + 6$	ii) $x^2 - 3x - 18$	$\left(\sqrt{r-q}\right)$ $\left(\frac{r}{\sqrt{r-q}}\right)$	(
= (x+3)(x+2)	= (x-6)(x+3)	$\Rightarrow \frac{p}{p} = p^2$	
4. Difference of 2 Squares (always	s 2 terms with a '-' between)	r-q	
Note: Watch for square numbers: 1	, 4, 9, 16, 25, 36, 49, 64, 81	$\Rightarrow p = p^2(r-q)$	(Multiplying both sides by (r - q))
e.g.s		$\Rightarrow p = p^2 r - p^2 q$	
i) $x^2 - 9y^2$	ii) $16a^2 - 25b^2$	$\Rightarrow -p^2r = -p - p^2q$	(Bringing term with r to LHS)
$= (x)^2 - (3y)^2$	$= (4a)^2 - (5b)^2$	$\Rightarrow p^2 r = p + p^2 q$	(Changing all the signs)
= (x - 3y)(x + 3y)	= (4a - 5b)(4a + 5b)	$\rightarrow r - \frac{p + p^2 q}{q}$	(dividing both sides by n^2)
		\rightarrow $r = p^2$	(arrang both sides by p)

a) Solving Linear Equations: (x only)	b) Solving Linear Equations With Fractions:
<u>Steps:</u>	<u>Tip:</u>
 Remove all brackets and any fractions 	"Kill" all fractions first by multiplying all terms by something that
2. Bring all terms with an 'x' to one side and numbers to the	ALL denominators divide into.
other side	
3 Tidy up both sides by putting together 'like terms'	Example: Solve $\frac{2x-3}{x+6} = \frac{3}{x+6}$
5. They up born sides by parting together like terms.	$\frac{2}{4} = \frac{1}{5} = \frac{1}{2}$
4. Solve the simple equation remaining.	In this case 20 will kill the fractions, so multiply across by 20:
	2x - 2 - x + 6 - 2
<u>Example:</u> $2(x-3) = 4(x+1)$	$20(\frac{2x-3}{x}) + 20(\frac{x+3}{x}) = 20(\frac{3}{x})$
2x-6 = 4x+4	F(2x - 2) + A(x + 6) = 10(2)
2x - 4x = 4 + 6	5(2x - 3) + 4(x + 0) = 10(3)
-2x = 10	10x - 15 + 4x + 24 = 30
$x = \frac{10}{2}$	10x + 4x = 30 + 15 - 24
=> r = -5	14x = 21
	$\Rightarrow x = \frac{21}{2} = \frac{3}{2}$
	14 2
c) Solving Quadratic Eqns by factorising: (Equations with an	<u>d) Solving Quadratic Eqns using the "-b Formula":</u>
$\frac{x^2}{2}$	Note: This method can be used for ALL quadratic equations.
Steps:	If $ax^2 + bx + c = 0$ is a quadratic equation, then the roots of the
1. Bring all terms to the left-hand side (LHS) and leave '0'	equation are given by:
on the RHS	
2 Factorise the LHS (See section on Factorising in previous	$-h \pm \sqrt{h^2 - 4ac}$ See Tables
tab)	$x = \frac{-b \perp \sqrt{b} - 4uc}{2}$
3 If LUS can't be factorized the 'Quadratic Formula'	$\sim 2a$ pg 20
5. If LFIS can be factorised the Quadratic formula	
needs to be used (See Example 3 on the right)	
4. Let each factor be = 0	Formula 2: Calua v2 2: 5 0
5. Solve the two simple equations to find the two answers.	Example 5: Solve $x^2 - 2x - 5 = 0$.
	In this case: $a = 1$, $b = -2$ and $c = -5$
Example 1: $x^2 - 3x - 18 = 0$	
(x-6)(x+3) = 0	$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{1 + c}$
x - 6 = 0 or $x + 3 = 0$	~ 2a
x = 6 or $x = -3$	$r = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-5)}}{-(-2)^2 - 4(1)(-5)}$
	x – 2(1)
Example 2: $4x^2 - 25 = 0$	$\rightarrow x = \frac{2 \pm \sqrt{24}}{24}$
(2r-5)(2r+5) = 0	$\Rightarrow x = \frac{1}{2}$
(2x - 3)(2x + 3) = 0	
2x - 5 = 0 01 $2x + 5 = 0$	$\Rightarrow x = 3.45 or x = -1.45$
=> 2x = 5 or 2x = -5	
$\Rightarrow x = \frac{3}{2} \text{ or } x = \frac{-3}{2}$	
- ~ ~	

e) Quadratic Eqns with fractions: Example: Solve $\frac{2}{x+1} - \frac{3}{x-2} = \frac{5}{2}$ f) Forming Quadratic Equation from the roots: Method 1: Steps: Method 1: (Multiply across by common denominator) 1. Let x = both of the roots. In this case the common denominator would be 2(x + 1)(x - 2): 2. Create two factors that are = 0. $\frac{2(x+1)(x-2)\frac{2}{x+1}-2(x+1)(x-2)\frac{3}{x+2}}{2(x-2)(2)-2(x+1)(3)=5(x+1)(x-2)} = \frac{2(x+1)(x-2)\frac{5}{2}}{2(x-2)(2)-2(x+1)(3)=5(x+1)(x-2)}$ 3. Multiply the two factors together using "split and repeat". **Example:** Find the quadratic equation with roots -1 and 3. $4x - 8 - 6x - 6 = 5x^2 - 5x - 10$ x = -1 or x = 3 $-5x^2 + 3x - 4 = 0$ x + 1 = 0 or x - 3 = 0 $5x^2 - 3x + 4 = 0$and solve this as before. (x+1)(x-3) = 0Method 2: (Tidy up both sides into single fractions and cross x(x-3) + 1(x-3) = 0multiply) (See Section 2 - Example 2) $x^2 - 3x + x - 3 = 0$ $\frac{2}{x+1} - \frac{3}{x-2} = \frac{5}{2}$ Need to know to $x^2 - 2x - 3 = 0$ use this method. Method 2: Use the formula $\frac{2(x-2) - 3(x+1)}{(x+1)(x-2)} = \frac{5}{2}$ F $x^2 - (sum \ of \ roots)x + (product \ of \ roots) = 0$ $\frac{-x-7}{(x+1)(x-2)} = \frac{5}{2}$ 2(-x-7) = 5(x+1)(x-2)**Example:** Find the quadratic equation with roots -1 and 3. $-2x - 14 = 5(x^2 - x - 2)$ $x^{2} - (sum of roots)x + (product of roots) = 0$ $-2x - 14 = 5x^2 - 5x - 10$ $x^2 - (-1 + 3)x + ((-1)(3)) = 0$ $x^2 - 2x - 3 = 0$ $5x^2 - 3x + 4 = 0$ etc.

5) Simultaneous Equations:

Steps:	
1. Choose a variable to elimin	nate e.g. 'y'
2. Multiply one or both equa	tions to make no. in front of y the
same	
3. Multiply the 2 nd equation	by -1, if necessary, to make signs in
front of 'y' different.	
4. Add the two equations to	eliminate 'y' and solve for 'x'.
5. Put x back into one of the	equations to find y.
	·
Example: Solve the equation	ns below:
A: 2x - 3y = 7	
B: 3x + 2y = 4	
$Ax2: \ 4x - 6y = 14$	(mult by 2 to get 6 in front of y)
Bx3: 9x + 6y = 12	(mult by 3 to get 6 in front of y)
13r - 26	(adding both equations together)
$13\lambda = 20$	(dividing both eductions together)
\rightarrow λ $-\frac{1}{13}$	(arriang both sides by 13)
$\Rightarrow x = 2$	
$\frac{4}{2r} = \frac{3v}{7} = 7$	
$\Rightarrow 2(2) - 3y = 7$	
$\Rightarrow 4^{-} - 3y = 7$	
\Rightarrow $-3y = 7 - 4$	
\Rightarrow $-3y = 3$	
$\Rightarrow \qquad y = \frac{3}{-3}$	(dividing both sides by -3)
\Rightarrow $y = -1$	

<u>6) Inequalities:</u>

<u>a) :</u>	Solving Inequalities:	Example 2: Graph the solution to $3(x - 2) \le -3$, $x \in R$.
Not	res:	
≻	Need to know the types of numbers (See Arithmetic	$3(x-2) \le -3$
	1b)	$3x - 6 \le -3$
≻	Same rules as solving linear equations (See Algebra	$3x \leq -3+6$ (adding 6 to both sides)
	4a)	$3x \leq 3$
≻	One difference: if you have to multiply/divide both	$\frac{3\pi}{3} \leq \frac{3}{3}$ (dividing both sides by 3)
	sides of an inequality by a NEGATIVE number, we	$\Rightarrow x \leq 1$
	must CHANGE THE DIRECTION of the inequality	
		For the number line, we're looking for all the Real numbers that are
Eve	mple 1: Graph the solution to $3 - 4x < 11$ $x \in 7$	smaller than or equal to 1.
	$\frac{1}{10} = \frac{1}{10} \text{ or upit the solution to } = \frac{1}{10} < $	← <u>→ → → → → → → → → → → → → → → → → → →</u>
	3 - 4r < 11	-4 -3 -2 -1 0 1 2 3 4 5 6
	-4x < 11 - 3	
	-4x < 8	
	$\frac{-4x}{3} < \frac{8}{3}$ (dividing both sides by -4)	
	r > -2 (Note sign change because	
	divided by -4)	
	divided by -+;	
Err	the number line we've leaking for all the Tatasard	
ror	The number line, we re looking for all the integers	
tha	t are digger than -2.	
	-4 -3 -2 -1 0 1 2 3 4 5 6	

7) Word Problems:

Tips:1. Read the question a couple of times before attempting it.2. Underline any Mathematical key words e.g. sum, product, total.3. Let 'x' be what you are looking for, if there is one unknown. Use4. Form an equation.5. Solve the equation.6. If you are unable to form an equation, try using "trial and impro workings.7. Check your answer(s).	'x' and 'y' for two unknowns. vement" to solve the problem. You need to show all trials and
 Example 1: Find two consecutive natural numbers whose sum is 83. Keywords: consecutive, natural and sum Let x = 1st number, so that means x + 1 = 2nd number Their sum is 83 ('sum' means they add to 83) > x + x + 1 = 83 (equation formed) > 2x + 1 = 83 > 2x = 83 - 1 > 2x = 82 > x = 41 (dividing both sides by 2) > second number is x + 1 = 42 Check41 + 42 = 83 	 Example 2: A shop sells 50 sofas in a week. A leather sofa costs €1000 and a fabric sofa costs €750. The shop sells €42,500 worth of sofas. How many of each type are sold? Let x = no. of leather sofas and y = no. of fabric sofas Total number of sofas = 50