## 1) Arithmetic Sequences/Series:

## a) Linear(Arithmetic) Sequences:

> A list of numbers where the difference between each term is the same every time.
E.g. 3, 8, 13, 18 ,
> In Senior Cycle, we refer to these sequences as Arithmetic Sequences.
> The General Term for an Arithmetic sequence can be found using:

where ' $a$ ' is the first term and ' $d$ ' is the common difference between the terms.
Example: i) Find the General Term for the sequence 3, 8, 13,
18.....
ii) Find the $50^{\text {th }}$ term, $T_{50}$.

$$
\begin{array}{|l|l}
a=3 \text { and } d=5 \\
\hline \text { i) } \Rightarrow T_{n}=3+(n-1) 5 & \\
& \text { ii) } T_{n}=5 n-2 \\
& \Rightarrow T_{n}=3+5 n-5 \\
& \Rightarrow T_{n}=5 n-2
\end{array}
$$

## b) Arithmetic Series:

- If we add the terms of an arithmetic sequence together, then we get an arithmetic series.
- We need to be able to find the sum of the first $n$ terms of such a series, which we can find using:

where ' $a$ ' is the first term and ' $d$ ' is the common difference between the terms of the series.
Example: Find the sum of the first 20 terms of the series $2+6+10+14+\ldots \ldots$.

$$
\begin{aligned}
\mathrm{a} & =2 \text { and } \mathrm{d}=4 \\
& \Rightarrow S_{20}=\frac{20}{2}\{2(2)+(20-1) 4\} \\
& \Rightarrow S_{n}=10\{4+(19) 4\} \\
& \Rightarrow S_{n}=10\{80\} \\
& \Rightarrow S_{n}=800
\end{aligned}
$$

## 2) Non-Linear Sequences:

a) Quadratic Sequences:

- A sequence where the second difference is the same every time.
E.g. $4,7,12,19,28$....... (see below)



## Steps to find General Term:

1. Let General Term $=T_{n}=a n^{2}+b n+c$
2. Find $2^{\text {nd }}$ difference and let $=2 a$ a....solve for $a$.
3. Use any 2 terms to form two equations in $b$ and $c$.

## b) Exponential Sequences:

- A sequence where each term is found by multiplying the previous term by the same number every time.
E.g. $2,6,18,54,162$.............


Example: Find the General Term of the sequence 4, 7, 12, 19, 28
Aep 1: Let the General Term $T_{n}=a n^{2}+b n+c$.
Step 2: Second difference $=2 a=+2 \Rightarrow a=+1$.
Step 3: Use two of the terms in the sequence to make two simultaneous equations, which we solve to find ' $b$ ' and ' $c$ '...... $T_{n}=a n^{2}+b n+c$

| $\mathrm{T}_{2}=(2)^{2}+\mathrm{b}(2)+\mathrm{c}=7$ | $\mathrm{~T}_{3}=(3)^{2}+\mathrm{b}(3)+\mathrm{c}=12$ |
| :--- | :--- |
| $\Rightarrow 4+2 \mathrm{~b}+\mathrm{c}=7$ | $\Rightarrow 9+3 \mathrm{~b}+\mathrm{c}=12$ |
| $\Rightarrow 2 \mathrm{~b}+\mathrm{c}=3 \ldots .$. Eqn 1 | $\Rightarrow 3 \mathrm{~b}+\mathrm{c}=3 \ldots . .$. Eqn 2 |

Step 4: Solving Equations 1 and 2 gives $b=0$ and $c=3$

$$
\begin{aligned}
& \Rightarrow T_{n}=n^{2}+(0) n+3 \\
& \Rightarrow T_{n}=n^{2}+3
\end{aligned}
$$

## c) Cubic Sequences

- A sequence where the third difference is the same every time.
E.g. $4,14,40,88,164$....... (see below)


