a) The Laws of Indices:

1) $a^{p} x a^{q}=a^{p+q} \quad$ e.g. $4^{4} \times 4^{3}=4^{7}$
2) $\frac{a^{p}}{a^{q}}=a^{p-q} \quad$ e.g $\frac{5^{3}}{5^{2}}=5^{3-2}=5^{1}$

See Tables pg 21
3) $\left(a^{p}\right)^{q}=a^{p q}$
e. $g\left(5^{2}\right)^{3}=5^{6}$
4) $a^{0}=1 \quad$ e.g. $7^{0}=1$ or $(0.5)^{0}=1$
5) $a^{-p}=\frac{1}{a^{p}}$
e.g. $3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$
6) $(a b)^{p}=a^{p} b^{p}$
e.g. $(3 x)^{2}=3^{2} x^{2}=9 x^{2}$
7) $\left(\frac{a}{b}\right)^{p}=\frac{a^{p}}{b^{p}}$
e.g. $\left(\frac{2}{3}\right)^{3}=\frac{2^{3}}{3^{3}}=\frac{8}{27}$
8) $a^{\frac{1}{2}}=\sqrt{a}$
e. g. $9^{\frac{1}{2}}=\sqrt{9}=3$
9) $a^{\frac{1}{3}}=\sqrt[3]{a}$
e. g. $27^{\frac{1}{3}}=\sqrt[3]{27}=3$

b) Solving equations with indices:

Steps:

1. Try and spot which powers you're dealing with, using the table below e.g. if you see a 9 and an 27 in the question, it would be powers of 3
2. Tidy up both sides of the equation into a single power using the laws of indices above. e.g. $5^{x}=5^{y}$
3. If the bases are the same on both sides, you can now let the powers be equal to each other. i.e. $x=y$
4. Solve the simple equation to find your solution.

Example: Solve $3^{x}=27 \sqrt{3}$
$3^{x}=3^{3} .3^{\frac{1}{2}}$......using Law 8 above on the $\sqrt{3}$
$3^{x}=3^{3+1 / 2} \ldots$. using Law 1
$3^{x}=3^{7 / 2}$............tidying up the power into a single fraction $\Rightarrow x=7 / 2 \ldots$. as the bases are equal

c) Table of Powers:

Note: It can be familiar to be able to recognise some of the more common powers. A table of them is shown below.

x	x^{1}	x^{2}	x^{3}	x^{4}	x^{5}	x^{6}	x^{7}	x^{8}
2	2	4	8	16	32	64	128	256
3	3	9	27	81	243			
4	4	16	64	256				
5	5	25	125	625				
6	6	36	216					
7	7	49	343					
8	8	64	512					
9	9	81	729					
10	10	100	1000					

2) Surds:

Notes:

$>$ A surd is a number in the form $\sqrt{ }$ that can't be written as a rational number i.e. in the form $\frac{a}{b}$
E.g. $\sqrt{2}$ and $\sqrt{3}$ are both surds but $\sqrt{9}$ is not as it can be written as $\frac{3}{1}$
> We can add/subtract similar surds together E.g. i) $3 \sqrt{2}+5 \sqrt{2}=8 \sqrt{2}$
ii) $4 \sqrt{3}+2 \sqrt{2}$.......we can't add these together as the $\sqrt{ }$ parts are different

Reducing Surds:

- We can use the rule $\sqrt{a b}=\sqrt{a} \sqrt{b}$ to reduce larger surds into a simpler form:
Example: Simplify $\sqrt{50}+\sqrt{32}$
- We use $50=25 \times 2$ rather than 10×5 as 25 is a square number:
$\sqrt{50}+\sqrt{32}$
$=\sqrt{25} \sqrt{2}+\sqrt{16} \sqrt{2}$
$=5 \sqrt{2}+4 \sqrt{2}$
$=9 \sqrt{2}$

