1) Indices:

a) The Laws of Indices:

1)
$$a^p x a^q = a^{p+q}$$
 e.g. $4^4 x 4^3 = 4^7$

2)
$$\frac{a^p}{a} = a^{p-q}$$

2)
$$\frac{a^p}{a^q} = a^{p-q}$$
 $e.g \frac{5^3}{5^2} = 5^{3-2} = 5^1$

See Tables pg 21

$$3) (a^p)^q = a$$

3)
$$(a^p)^q = a^{pq}$$
 $e.g (5^2)^3 = 5^6$

4)
$$a^0 = 1$$

4)
$$a^0 = 1$$
 $e.g. 7^0 = 1 \text{ or } (0.5)^0 = 1$

5)
$$a^{-p} = \frac{1}{3}$$

5)
$$a^{-p} = \frac{1}{a^p}$$
 $e.g. 3^{-2} = \frac{1}{3^2} = \frac{1}{9}$

6)
$$(ab)^p = a^p b$$

6)
$$(ab)^p = a^p b^p$$
 $e.g. (3x)^2 = 3^2 x^2 = 9x^2$

7)
$$(\frac{a}{b})^p = \frac{a}{b}$$

7)
$$(\frac{a}{b})^p = \frac{a^p}{b^p}$$
 $e.g. (\frac{2}{3})^3 = \frac{2^3}{3^3} = \frac{8}{27}$

8)
$$a^{\frac{1}{2}} = \sqrt{a}$$

$$e. g. 9^{\frac{1}{2}} = \sqrt{9} = 3$$

9)
$$a^{\frac{1}{3}} = \sqrt[3]{a}$$

Steps:

1. Try and spot which powers you're dealing with, using the table below e.g. if you see a 9 and an 27 in the question, it would be powers of 3

2. Tidy up both sides of the equation into a single power using the laws of indices above. e.g. $5^x = 5^y$

3. If the bases are the same on both sides, you can now let the powers be equal to each other. i.e. x = y

4. Solve the simple equation to find your solution.

Example: Solve $3^{\times} = 27\sqrt{3}$

b) Solving equations with indices:

$$3^x = 3^3 \cdot 3^{\frac{1}{2}}$$
using Law 8 above on the $\sqrt{3}$

$$3^x = 3^{3+1/2}$$
....using Law 1

$$3^x = 3^{7/2}$$
tidying up the power into a single fraction

 $\Rightarrow x = \frac{7}{2}$ as the bases are equal

c) Table of Powers:

Note: It can be familiar to be able to recognise some of the more common powers. A table of them is shown below.

×	×¹	x ²	x ³	x ⁴	x ⁵	x ⁶	x ⁷	x ⁸
2	2	4	8	16	32	64	128	256
3	3	9	27	81	243			
4	4	16	64	256				
5	5	25	125	625				
6	6	36	216					
7	7	49	343					
8	8	64	512					
9	9	81	729					
10	10	100	1000					

2) Surds:

Notes:

A surd is a number in the form $\sqrt{}$ that can't be written as a **rational** number i.e. in the form $\frac{a}{b}$

E.g. $\sqrt{2}$ and $\sqrt{3}$ are both surds but $\sqrt{9}$ is not as it can be written as $\frac{3}{2}$

We can add/subtract similar surds together

E.g. i)
$$3\sqrt{2} + 5\sqrt{2} = 8\sqrt{2}$$

ii) $4\sqrt{3} + 2\sqrt{2}$ we can't add these together as the √ parts are different

Reducing Surds:

We can use the rule $\sqrt{ab} = \sqrt{a}\sqrt{b}$ to reduce larger surds into a simpler form:

Example: Simplify $\sqrt{50} + \sqrt{32}$

We use $50 = 25 \times 2$ rather than 10×5 as 25 is a square number:

$$\sqrt{50} + \sqrt{32}$$

$$= \sqrt{25}\sqrt{2} + \sqrt{16}\sqrt{2}$$

$$=5\sqrt{2}+4\sqrt{2}$$

$$=9\sqrt{2}$$