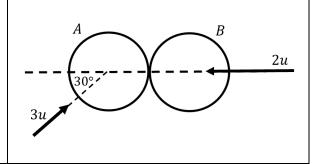
Level 1:

- Q1. A particle of mass $0.2 \, kg$ is fired horizontally with speed $200 \, m/s$ into a block of sand that is at rest. The block is of mass $2 \, kg$ and is sitting on a smooth horizontal surface. The particle emerges from the block with a speed of $120 \, m/s$. Find the speed of the block.
- Q2. A smooth sphere of mass 4 kg, moving with a speed of 11 m/s collides directly with a smooth sphere of mass 6 kg, moving in the same direction with a speed of 7 m/s. After collision, the 6 kg sphere moves with a speed of 10 m/s.
 - Calculate (i) the speed of the first sphere after collision and (ii) the coefficient of restitution.
- Q3. Two elastic spheres of mass, 1 kg and 2 kg, travelling in opposite directions collide directly. The speeds before collision are 16 m/s and 9 m/s respectively. If the coefficient of restitution is $\frac{5}{7}$, calculate the kinetic energy lost in the collision.
- Q4. A smooth sphere A of mass M moving with speed $\sqrt{13} \, m/s$ collides with a smooth sphere B of mass 2M which is at rest. The direction of motion of A makes an angle of $\tan^{-1}(\frac{2}{3})$ with the line of centres at impact. The coefficient of restitution is 0.5. Calculate:
 - (i) the velocity of each sphere after the collision
 - (ii) the loss in kinetic energy due to the impact
 - (iii) the impulse imparted to each sphere during impact
- Q5. A particle A of mass m moving with speed 5u on a smooth horizontal plane collides directly with another particle B of mass 6m moving with speed u in the same direction. After this collision B strikes a smooth vertical wall at right-angles to the direction of its motion. The coefficient of restitution between the two particles is $\frac{3}{4}$ and the coefficient of restitution between B and the wall is $\frac{1}{4}$.
 - (i) Find the velocities of A and B after the first collision.
 - (ii) Show that A and B to not collide again.
- Q6. A ball falls from rest onto smooth horizontal ground from a height of $3.5 \, m$. The ball hits the ground with a speed of $v \, m/s$ and rebounds back up to a height of s metres above the ground. If the coefficient of restitution between the ball and the ground is 0.6, find:
 - (i) the value of v (ii) the value of s.
- Q7. A smooth sphere A, of mass 2 kg, is moving with a speed of 4 m/s. It collides directly with a smooth sphere B, of mass 5 kg, moving in the opposite direction with speed 2 m/s, on a smooth horizontal surface. Sphere B is brought to rest because of the collision and the coefficient of restitution for the collision is e.
 - (i) Find the speed of sphere A after the collision.
 - (ii) Find the value of e.
 - (iii) Find the percentage loss in kinetic energy due to the collision.

Level 2:

- Q8. A train of mass $100 \ tonnes$ is travelling up a straight track, which is at an angle of 5° to the horizontal. There is a force resisting the motion of the train of magnitude $6 \ kN$ and the train's engine is working at a steady rate of $400 \ kW$.
 - (i) Find the maximum speed of the train.
 - The track then becomes horizontal. The engine continues to work at the same rate of $400\ kW$ and the resistance to motion stays at 6kN.
 - (ii) Find the acceleration of the train when it starts on the horizontal section.


- Q9. A van of mass $2500\,kg$ accelerates from a stationary position on a straight horizontal road. There is a resistance to motion of $400\,N$ throughout, while the engine is working at a constant power of $21\,kW$.
 - (i) Find the acceleration of the car when its speed is $15 \, m/s$.
 - (ii) Find the maximum speed the car can achieve at a power of $21\,kW$.
- Q10. A smooth sphere of mass 1 kg strikes a stationary sphere of mass 2 kg. The line of centres makes an angle of 30° with the original direction. If the collision is perfectly elastic, show that the spheres have equal speeds after impact.
- Q11. A sphere of mass m and velocity 2u impinges directly on a sphere of mass 2m and velocity u, moving in the same direction. Prove that the velocity of the second sphere must have its value increased. Find e if the speed of mass m after the impact is reduced to u.
- Q12. A smooth sphere A collides with an identical smooth sphere B which is rest. The velocity of A before impact makes an angle α with the line of centres at impact. Show that the angle θ through which the path of A is deflected is given by

$$\tan \theta = \frac{\tan \alpha (1+e)}{(1-e) + 2 \tan^2 \alpha}$$

where e is the coefficient of restitution for the impact.

- Q13. A smooth sphere P, of mass km, moving with speed u collides directly with a smooth sphere Q, of mass m, moving in the same direction with speed ku. Sphere P is brought to a stop by the collision.
 - (i) Find the speed of Q after the collision, in terms of k and u.
 - (ii) Prove that $k \leq \frac{1}{3}$.
- Q14.

A smooth sphere A, of mass 3m, collides obliquely with a smooth sphere B, of mass 2m. The directions of motion and velocities of both spheres before the collision is shown in the diagram on the right. After the collision, A and B move in directions that are at right angles to one another. Find the coefficient of restitution for the collision.

Q15. Two smooth spheres of mass 2m and m are moving in opposite directions with speed u and 2u respectively. They collide directly on a smooth horizontal table. If E and F are the sums of the kinetic energies of the spheres before and after the collision respectively, prove that $e = \sqrt{\frac{F}{E}}$.

Level 3:

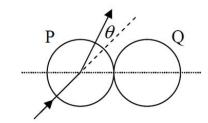
- Q16. A particle P of mass 2m is moving in a straight line with speed u at the instand when it collides directly with a particle Q of mass m which is at rest. The coefficient of restitution between P and Q is e.
 - (i) Show that after the collision P is moving with speed $\frac{1}{3}(2-e)u$.
 - (ii) Show that the kinetic energy lost in the collision is $\frac{1}{3}mu^2(1-e^2)$.
- Q17. A smooth sphere P of mass M moving with a speed of v impinges on a smooth sphere Q of mass 2M which is at rest, the direction of motion of P making an angle of 30° with the line of centres. After impact P is moving at right angles to its original direction. Find the coefficient of restitution for the impact.

- Q18. A particle of mass m is thrown vertically upwards with speed u from a point P on horizontal ground. Simultaneously a second identical particle, also of mass m, is thrown vertically downwards with speed from point Q, where Q is vertically above P at a distance of h, where $h < \frac{4u^2}{g}$. On impact the two particles adhere and move subsequently as a single particle. Show that the loss of kinetic energy due to the impact is mu^2 . Show also that the speed with which the combined particle hits the ground is \sqrt{gh} .
- Q19. A smooth sphere moves on a smooth horizontal surface and strikes an identical smooth sphere lying at rest on the table at a distance of 2m from a vertical wall. Prove that the next impact between the spheres will take place at a distance $\frac{4e^2}{1+e^2}$ metres from the wall, where e is the coefficient of restitution for all impacts involved.

Answers:

Q1. 8 m/s	Q2. (i) 6.5 m/s (ii) $e = \frac{7}{8}$		Q3. 102 <i>J</i>	$\underline{\mathbf{Q4.}} (\mathbf{i}) (0\vec{\imath} + 2\vec{\jmath}) m/s, (1.5\vec{\imath} + 0\vec{\jmath}) m/s (\mathbf{i}\mathbf{i}) \frac{9M}{4} J (\mathbf{i}\mathbf{i}\mathbf{i}) 3M (Ns)$		
<u>Q5.</u> (i) $-u\vec{i}$, $2u\vec{i}$ <u>Q6.</u> (i) 8.29 m/s (ii) 1) 1.26 m	<u>Q7.</u> (i) $1 m/s$ (ii) $\frac{1}{6}$ (iii) 96%			
Q8. (i) $4.38 \ m/s$ (ii) $0.85 \ m/s^2$			<u>Q9.</u> (i) 0	$0.4 \ m/s^2$ (ii) $52.5 \ m/s$	<u>Q11.</u> (ii) $e = \frac{1}{2}$	Q13. (i) 2uk m/s
Q14. e = 0.	41	Q17. $e = 1$				

Past Exam Questions:


2012 Q5

(a) Three smooth spheres, A, B and C, of mass 3m, 2m and m lie at rest on a smooth horizontal table with their centres in a straight line. Sphere A is projected towards B with speed 5 m s⁻¹. Sphere A collides directly with B and then B collides directly with C.

The coefficient of restitution between the spheres is e.

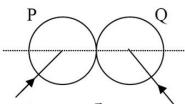
Show that if
$$e > \frac{3 - \sqrt{5}}{2}$$
 there will be no further collisions.

(b) A smooth sphere P collides with an identical smooth sphere Q which is at rest. The velocity of P before impact makes an angle α with the line of centres at impact, where $0^{\circ} \le \alpha < 90^{\circ}$.

The velocity of P is deflected through an angle θ by the collision.

The coefficient of restitution between the spheres is $\frac{1}{3}$.

Show that
$$\tan \theta = \frac{2 \tan \alpha}{1 + 3 \tan^2 \alpha}$$
.


2014 Q5

(a) A smooth sphere A, of mass 2m, moving with speed u collides directly with a smooth sphere B, of mass 7m, which is at rest. B then collides with a vertical wall which is perpendicular to the direction of motion of the spheres.

The coefficient of restitution is $\frac{1}{2}$ for all collisions.

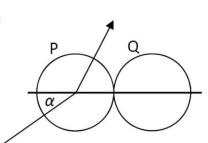
- (i) Show that the spheres will not collide for a second time.
- (ii) What is the total loss of kinetic energy due to the impacts?
- (b) A smooth sphere P, of mass 2m, collides with a smooth sphere Q, of mass m. The velocity of P is $3u \ \vec{i} + 4u \ \vec{j}$ and the velocity of Q is $-4u \ \vec{i} + 3u \ \vec{j}$.

When they collide their line of centres is parallel to the unit vector \vec{i} .

The impact causes a loss of kinetic energy equal to $\frac{25mu^2}{2}$.

- (i) Find the coefficient of restitution between the spheres.
- (ii) If the magnitude of the impulse imparted to each sphere due to the collision is kmu, find the value of k.

2017 Q5


(a) A small smooth sphere A, of mass 1·5 kg, moving with speed 6 m s⁻¹, collides directly with a small smooth sphere B, of mass m kg, which is at rest. After the collision the spheres move in opposite directions with speeds v and 2v, respectively.

80% of the kinetic energy lost by A as a result of the collision is transferred to B. The coefficient of restitution between the spheres is *e*.

- Find (i) the value of v
 - (ii) the value of e.
- (b) A small smooth sphere P, of mass 3m, collides obliquely with a small smooth sphere Q, of mass 7m, which is at rest.

Before the collision the velocity of P makes an angle α with the line joining the centres of the spheres. After the collision the speed of Q is ν .

The coefficient of restitution between the spheres is $\frac{2}{7}$.

- (i) Find, in terms of v and α , the **speed** of P before the collision.
- (ii) If $\alpha = 30^{\circ}$ find the angle through which the <u>direction</u> of motion of P is deflected as a result of the collision.

2019 Q5

- (a) A small smooth sphere A, of mass 3m moving with speed u, collides directly with a small smooth sphere B, of mass m moving with speed u in the opposite direction. The coefficient of restitution between the spheres is $\frac{1}{2}$.
 - (i) Find, in terms of u, the speed of each sphere after the collision.

After the collision B hits a smooth vertical wall which is perpendicular to the direction of motion of B. The coefficient of restitution between B and the wall is $\frac{2}{5}$.

The first collision between the spheres occurred at a distance 2 metres from the wall. The spheres collide again 4 seconds after the first collision between them.

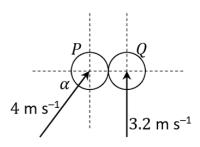
- (ii) Find the value of u.
- (b) A smooth sphere P, of mass 2m, collides with a smooth sphere Q, of mass m. The velocity of P is $3u \ \vec{i} + 4u \ \vec{j}$ and the velocity of Q is $-4u \ \vec{i} + 3u \ \vec{j}$, where \vec{i} is along the line of centres at impact.

The coefficient of restitution between the spheres is $\frac{5}{7}$.

Find

- (i) in terms of u, the speed of each sphere after the collision
- (ii) the angle between the directions of P and Q after the collision.__

2023 Q2(b)


Two smooth spheres, P and Q, have equal radius and are of mass m and 2m respectively. P and Q collide obliquely. The line joining their centres at the point of impact lies along the $\vec{\imath}$ axis.

Before the collision, sphere P moves with a velocity of 4 m s⁻¹ at an angle α with the \vec{i} axis, where $\sin\alpha=\frac{4}{5}$.

Before the collision, sphere Q moves with a velocity of 3.2 m s⁻¹ perpendicular to the \vec{i} axis.

The coefficient of restitution between the spheres is e, where $0 \le e \le 1$.

Calculate, in terms of e, the velocity of each sphere immediately after they collide

Past Exam Questions:

2014: (a) (ii) $\frac{7}{8}mu^2$ (b) (i) 0.484 (ii) 6.93	2017: (a) (i) $\frac{12}{7}$ m/s (ii) $\frac{6}{7}$ (b) (i) $\frac{70v}{27\cos\alpha}$ (ii) 50.17°	
2019: (i) $\frac{u}{4}$, $\frac{5u}{4}$ (ii) 0.93 (b)(i) $u\sqrt{17}$, $5u$ (ii) (67.17° 2023 : $v_P = 0.8(1 - 2e)\vec{i} + 3.2\vec{j}, v_Q = 0.8(1 + e)\vec{i} + 3.2\vec{j}$	