* Went through all this page on the board getting them to work with me at the back of their copies.
- Linear Patterns from JC:
- A linear sequence of numbers is a list of numbers where there is a common difference between each term.
- E.g. 3, 8, 13, 18, 23........which has a common difference of +5 .
- In Junior Cycle, we learned how to find the General Term (T_{n}) of a linear sequence.

Step 1: Multiply the common difference by ' n ' in the sequence above: $5 n$ Step 2: See what needs to be added or subtracted to 5 n to get each of the terms in the sequence \qquad in the sequence above: -2
Step 3: Write the General Term $T_{n}=5 n-2$.

- Once we had the general term, there were two useful things that we were able to do:

Finding any term in the sequence	Finding the term number of a value
For example, to find the $50^{\text {th }}$ term:	For example, what term is 568 ?
T_{n} $=5 n-2$ $\Rightarrow T_{n}$ $=5(50)-2$ $=250-2$ $=248$ $\Rightarrow 5 n=570$	
	$\Rightarrow n=114$

- Quadratic Patterns from JC:
- We also learned in Junior Cycle about Quadratic Sequences.
- A quadratic sequence is a list of numbers where the second difference between each term is the same every time.
- E.g. 4, 7, 12, 19, 28, 39 \qquad which has first differences of $+3,+5,+7,+9 \ldots . . .$. and a second difference of +2 .
- To find the General Term of a quadratic sequence we:

Step 1: Let the General Term $T_{n}=a n^{2}+b n+c$.
Step 2: The second difference represents $2 a$, so halving the second difference gave us a value for a. in the sequence above, the second difference is +2 , so ' a ' would be 1 . Step 3: Use two of the terms in the sequence to make two simultaneous equations, which we solve to find ' b ' and ' 'c......
$T_{n}=a n^{2}+b n+c$
$T_{2}=(2)^{2}+b(2)+c=7$
$\Rightarrow 4+2 b+c=7$
$\Rightarrow 2 b+c=3$.....Eqn 1

$$
\begin{aligned}
& T_{3}=(3)^{2}+b(3)+c=12 \\
& \Rightarrow 9+3 b+c=12 \\
& \Rightarrow 3 b+c=3 \ldots \ldots . . \text { Eqn } 2
\end{aligned}
$$

Solving Equations 1 and 2 gives $b=0$ and $c=3$
$\Rightarrow T_{n}=n^{2}+(0) n+3$
$\Rightarrow T_{n}=n^{2}+3$
$>$ Note: An alternative method to find Tn of a Quadratic Sequence is use three terms and form three equations in a, b and c and solve for those values then.

- If a sequence is such that the third difference between its terms is the same every time, then that is known as a cubic sequence.
E.g. 11, 31, 69, 131, 223......

Topic 38: Arithmetic Sequences/Series

- In your LC Maths course, the term we use to describe linear sequences is Arithmetic Sequences.
- We use a formula at senior cycle to help us find the General Term of this type of sequence quickly:

where ' a ' is the $1^{\text {st }}$ term and ' d ' is the common difference
- If we add together the terms of an arithmetic sequence, we get an Arithmetic Series.
- It can be useful to be able to find the sum of the terms of an arithmetic series.
- We use a formula to help us find the sum of the first n terms:

- Example: A sequence is $3,9,15,21,27 \ldots \ldots$.
i) Find the $60^{\text {th }}$ term. ii) Find the sum of the first 60 terms. iii) What term is the first term to be bigger than 10000?
Solution:
i) Firstly, we will find the General Term: \quad ii) This time we need to use the S_{n}
- As $a=3$ and $d=6$, then

$$
\begin{aligned}
& T_{n}=a+(n-1) d \\
& \Rightarrow T_{n}=3+(n-1)(6) \\
& \Rightarrow T_{n}=3+6 n-6 \\
& \Rightarrow T_{n}=6 n-3
\end{aligned}
$$

- So, now we can find the $60^{\text {th }}$ term:
$T_{60}=6(60)-3$

$$
=360-3
$$

formula:

$$
\begin{aligned}
& S_{n}=\frac{n}{2}\{2 a+(n-1) d\} \\
= & \frac{60}{2}\{2(1)+(60-1)(3)\} \\
= & 30\{2+177\} \\
= & 5370
\end{aligned}
$$

$$
=357
$$

iii) To find this term, we need to solve $T_{n}>10000$

$$
\begin{aligned}
& 6 n-3>10000 \\
& \Rightarrow 6 n>10003 \\
& \Rightarrow n>1667.17 \\
& \Rightarrow \text { the } 1668^{\text {th }} \text { term will be the first term to be bigger than } 10000
\end{aligned}
$$

Day 1: Classwork Questions: Sheet: Exercise 1 Qs 4/5/9 and Exercise 2 Qs 1(ii)(vi)/4 and then give Pg 146 Ex 8A Qs 2/3/5 for HW to finish also

$>$ Topic 39: Geometric Sequences:

- A Geometric sequence is a set of numbers where each term is found by multiplying the previous term by the same number, known as the common ratio.
E.g. 10, 30, 90, 270.........
- The common ratio is denoted ' r '.
- We also use a formula to help us find the General Term of this type of sequence:

where ' a ' is the $1^{\text {st }}$ term and ' r ' is the common ratio.
- Similarly, a Geometric Series is a series where the terms of a Geometric Sequence are added together.
- It can be easily shown that the sum of the first n terms of a Geometric Series can be found using the formula:

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \text { if } r<1 \text { or } S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \text { if } r>1
$$

where ' a ' is the $1^{1 s t}$ term and ' r ' is the common ratio.

- In the specific case of an infinite Geometric series, the formulae above simplify to:

$$
S_{\infty}=\frac{a}{1-r}
$$

Classwork Questions: Questions from Sheet on Geo S Ex 4 Qs 1(ii)(iv)(v)(vi)/2(ii)(iv)/3 and Ex 5 Qs 1(ii)/2(ii)

> Topic 40: Recurrence Relations

- A recurrence relation is a sequence which is defined differently to how previous sequences we have come across are defined.
- Up to now, the General Term described any term in terms of ' n '.
- In a recurrence relation a sequence is defined showing how any term is connected to the previous term.
- Examples of recurrence relations would be:

$$
\text { i) } T_{n}=3 T_{n-1}
$$

Any term $=3$ times the previous term
ii) $T_{n+1}=T_{n}-4$

Any term = the previous term less 4

Note the use of ' u ' instead of ' T '
iii) $u_{n+1}=\frac{1}{2} u_{n}-3$

Any term = half the previous term less 3

- Example: Pg 149 Ex 8B Q5

A sequence $T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6} \ldots$. is defined by the recurrence relation $T_{n+1}=\frac{1}{4} T_{n}$, for $n \in N$ where $T_{1}=144$.
i) Write down the first four terms.
ii) Find S_{∞} the sum of the entire series.

Solution:

i) Firstly, the key information we need is the recurrence relation itself $T_{n+1}=\frac{1}{4} T_{n}$, which tells us that any term in this sequence is a quarter of the previous term.

- We were also given $T_{1}=144$, so the next term will be $\frac{1}{4}(144)=36$.
- The third term will be $\frac{1}{4}(36)=9$ and the fourth term will be $\frac{1}{4}(9)=\frac{9}{4}$
ii)
- Let's start by writing out the sequence and identifying what type it is:

$$
144,36,9,9 / 4, \ldots \ldots
$$

- This is a Geometric Sequence with $a=144$ and $r=\frac{1}{4}$.
- To find S_{∞}, we use the formula above for the sum of an infinite Geometric sequence:

$$
\begin{aligned}
& S_{\infty}=\frac{a}{1-r} \\
& \Rightarrow S_{\infty}=\frac{144}{1-\frac{1}{4}}=\frac{144}{\frac{3}{4}}=192
\end{aligned}
$$

Classwork Questions: Pg 149 Ex 8B Qs 2/3/7/8/10

* Not enough in this lesson, so went through Example 1 on next page at the end of this lesson and did both examples then in the next lesson.

> Topic 41: First Order Difference Equations

- We saw in the previous topic that when we are given a recurrence relation, we have to go through the process of working out the previous term if we want to know ANY term in the sequence.
- This can be a fairly time-consuming process, if for example, we wanted to know the $5000^{\text {th }}$ term of a sequence, as we'd have to work out the previous 4999 terms first.
- For this reason, it is very useful if we can work out the General Term from a recurrence relation.
- In order to do this, we have to learn how to solve a difference equation.

- First Order Difference Equations:

- These difference equations are ones where each term is defined in terms of one previous term. e.g. $T_{n+1}=\frac{1}{4} T_{n}-3$

- Example 1: Pg 151 Ex 8C Q3

i) Solve the difference equation $u_{n}=3+2 u_{n-1}$ given that $u_{0}=1$.
ii) As $n \rightarrow \infty$, which of these is true? A: u_{n} gets smaller and smaller. B: u_{n} gets bigger and bigger. C : u_{n} tends to a finite limit k.
Solution:

- The strategy to solve this type is to sub in increasing values for n starting at 1 , and see if we can spot a pattern to link u_{n} and the term we've been given (in this example u_{0}):

$$
\begin{array}{c|c|c}
\hline u_{n}=\frac{n=1}{3+2} u_{n-1} & u_{n}=\frac{n=2}{3+2} u_{n-1} & u_{n}=\frac{n=3}{3+2} u_{n-1} \\
\Rightarrow u_{1}=3+2 u_{0} & \Rightarrow u_{2}=3+2 u_{1} & \Rightarrow u_{3}=3+2 u_{2} \\
\Rightarrow u_{1}=3+2(1) & \Rightarrow u_{2}=3+2(3+2(1)) & \Rightarrow u_{3}=3+2\left(3+2(3)+2^{2}(1)\right) \\
& \Rightarrow u_{2}=3+2(3)+2^{2}(1) & \Rightarrow u_{3}=3+2(3)+2^{2}(3)+2^{3}(1)
\end{array}
$$

- Hopefully, you can now spot from looking at u_{1}, u_{2} and u_{3} above that
a) the terms in red form a pattern and are of the form $2^{n}(1)$
b) the terms in blue form a geometric series with $a=3$ and $r=2$, so we can find the sum of that series using our formula from the first topic:

$$
\begin{aligned}
& S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \\
& \Rightarrow S_{n}=\frac{3\left((2)^{n}-1\right)}{2-1} \\
& \Rightarrow S_{n}=\frac{3\left((2)^{n}-1\right)}{1} \\
& \Rightarrow S_{n}=3(2)^{n}-3
\end{aligned}
$$

- So, combining the two gives us: $1(2)^{n}+3(2)^{n}-3$.
- And finally, adding together the like terms gives us our final solution: $4(2)^{n}-3$
ii)
- As we now know the General Term, we can write out the first few terms of the sequence:

$$
\begin{aligned}
u_{1} & =4\left(2^{1}\right)-3=5, u_{2}=4\left(2^{2}\right)-3=13, u_{3}=4\left(2^{3}\right)-3=29, u_{4}=4\left(2^{4}\right)-3=61 \\
& \Rightarrow \text { Sequence is: } 5,13,29,61 \ldots \ldots .
\end{aligned}
$$

- We can see from the sequence above that the distance between the terms is increasing as we add on more terms, so u_{n} is just going to get bigger and bigger as $n \rightarrow \infty$.

- Example 2: Pg 151 Ex 8C Q4

Savani has $€ 500$ in her savings account. She decides that, now that she has a new job, she will put $€ 1000$ on January $1^{\text {st }}$ every year into her savings account. The bank offers 1% compound interest per annum.
i) Show that the amount in her savings account after n years $\left(A_{n}\right)$ is determined by the difference equation $A_{n}=1.01 A_{n-1}+1000$.
ii) Given that $A_{0}=500$, solve this difference equation.
iii) How much will she have in her account in 20 years' time?

Solution:
i) If she has ' x ' euro in her account at the start of ANY year, then she will have 1.01x at the end of the year as the bank adds 1% compound interest.

- She then adds in $€ 1000$ at the start of the next year.
- So, at the end of ANY year she will have 1.01 of what she had the previous year plus an additional $€ 1000 \Rightarrow A_{n}=1.01 A_{n-1}+1000$ Q.E.D
ii) As before,

- So hopefully, we see the pattern again.......
- The red terms being $\left(1.01^{n}\right)(500)$ and the blue terms being a Geometric Series with $a=1000$ and $r=1.01$.
- We can find the sum of this series using our formula:

$$
\begin{aligned}
& S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \\
& \Rightarrow S_{n}=\frac{1000\left((1.01)^{n}-1\right)}{1.01-1} \\
& \Rightarrow S_{n}=\frac{1000\left((1.01)^{n}-1\right)}{0.01} \\
& \Rightarrow S_{n}=100,000\left((1.01)^{n}-1\right)
\end{aligned}
$$

- So, our solution will be: $\left(1.01^{n}\right)(500)+100,000\left((1.01)^{n}-1\right)$.

$$
\begin{aligned}
& =500\left(1.01^{n}\right)+100,000(1.01)^{n}-100,000 \\
& \Rightarrow A_{n}=100,500(1.01)^{n}-100,000
\end{aligned}
$$

iii) To calculate how much she will have after 20 years, we just have to sub in $n=20$:

$$
\begin{aligned}
& A_{n}=100,500(1.01)^{n}-100,000 \\
& A_{20}=100,500(1.01)^{20}-100,000 \\
& \Rightarrow A_{20}=€ 22,629.10
\end{aligned}
$$

Day 1: Classwork Questions: Pg 151 Ex $8 C$ Qs 1/2/5(a)(b)
Day 2: Classwork Questions: Pg 152 Ex 8C Qs 6/8/9/11

Leaving Certificate

- Interest Repayments:
- Example: Pg 154 Ex 8D Q3

A couple borrows $€ 425,000$ to buy a house. They will repay the same amount (A) each month for 25 years. The Building Society charges a monthly interest rate of 0.5%.
i) How many monthly repayments will there be ?
ii) If D_{n} is the amount of debt owing after n months write down a difference equation in D_{n}.
iii) Solve the difference equation.
iv) Find A to the nearest euro.

Solution:

i) The number of monthly repayments over 25 years will be $25 \times 12=300$.
ii) In ANY month, the couple will owe 1.005 of what they owe the previous month D_{n-1} (as the interest rate is 0.5%) and then they will make a repayment of A
$\Rightarrow D_{n}$ will be: $1.005\left(D_{n-1}\right)-A$
iii) We now solve as before:

$\begin{aligned} & D_{n}=1.005=1 \\ & \Rightarrow D_{1}=1.005 D_{0}-A \end{aligned}$	$\begin{gathered} D_{n}=1.005 D_{n-1}-A \\ \Rightarrow D_{2}=1.005 D_{1}-A \\ \Rightarrow D_{2}=1.005\left(1.005 D_{0}-A\right)-A \\ \Rightarrow D_{2}=1.005^{2} D_{0}-1.005 A-A \end{gathered}$	$\begin{gathered} D_{n}=1.005 D_{n-1}-A \\ \Rightarrow D_{3}=1.005 D_{2}-A \\ \Rightarrow D_{3}=1.005\left(1.005^{2} D_{0}-1.005 A-A\right)-A \\ \Rightarrow D_{3}=1.005^{3} D_{0}-1.005^{2} A-1.005 A-A \\ \Rightarrow D_{3}=1.005^{3} D_{0}-1\left(1.005^{2} A+1.005 A+\right. \end{gathered}$ A)

- So the pattern this time is.......
- The first term being $\left(1.005^{n}\right) D_{0}$ and the terms in the brackets being a Geometric Series with $a=A$ and $r=1.005$.
- Again, we can find the sum of this series using our formula:

$$
\begin{aligned}
& \mathrm{S}_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \\
& \Rightarrow \mathrm{~S}_{n}=\frac{A\left((1.005)^{n}-1\right)}{1.005-1} \\
& \Rightarrow \mathrm{~S}_{n}=\frac{A\left((1.005)^{n}-1\right)}{0.005} \\
& \Rightarrow S_{n}=200 A\left((1.005)^{n}-1\right)
\end{aligned}
$$

- So, our solution will be: $D_{n}=\left(1.005^{n}\right) D_{0}-200 A\left((1.005)^{n}-1\right)$.
iv)
- We know $D_{0}=€ 425,000$ and $n=300$ from part (i) and we also know that the debt will be repaid when $D_{n}=0=>$

$$
\begin{aligned}
& \Rightarrow\left(1.005^{300}\right)(425,000)-200 A\left((1.005)^{300}-1\right)=0 \\
& \Rightarrow 1897612.17-200 A(3.464969812)=0 \\
& \Rightarrow 1897612.17-692.9939624 A=0 \\
& \Rightarrow 1897612.17=692.9939624 A \\
& \Rightarrow A=\frac{1897612.17}{692.9939624}=€ 2738.28=€ 2738
\end{aligned}
$$

Classwork Questions: Pg Ex 8 D Qs 1/2/5

> Topic 42: Second Order Difference Equations

- Second Order Homogeneous Equations:

- These difference equations are ones where each term is defined in terms of two previous terms. e.g. $T_{n+1}=3 T_{n}-\frac{3}{4} T_{n-1}$ or $u_{n+2}-2 u_{n+1}+3 u_{n}=0$
- Second order difference equations are called homogeneous, if they only contain T_{n}, T_{n+k} or T_{n-k}.
- If they contain other terms other than those, they are known as inhomogeneous equations or non-homogeneous ones. E.g. $u_{n+2}-2 u_{n+1}+3 u_{n}-4=0$
- The example above is non-homogeneous as it contains an extra constant of 4.
- When solving homogeneous equations, we first solve what is known as the characteristic quadratic equation.
- If the difference equation is: $u_{n+2}-2 u_{n+1}+3 u_{n}=0$ then the corresponding characteristic equation will be: $x^{2}-2 x+3=0$. (Note that the coefficients have to match in both equations).
- There are two theorems we need then to solve the difference equation:

Difference Equation Theorem 1
If a and b are the two roots of the characteristic equation $p x^{2}+q x+r=0$, then the solution to the second-order difference equation $p u_{n+2}+q u_{n+1}+r u_{n}=0$ will be in the form: $\qquad$$u_{n}=l a^{n}+m b^{n}$ If a and a are the two equal roots of the characteristic equation $p x^{2}+q x+r=0$, then the solution to the second-order difference equation $p u_{n+2}+q u_{n+1}+r u_{n}=0$ will be in the form: $u_{n}=l a^{n}+m n a^{n}$

- Example 1: Pg 156 Ex 8E Q4

Solve $2 u_{n+2}-11 u_{n+1}+5 u_{n}=0$ given $u_{0}=2$ and $u_{1}=-8$.
Solution:

- First we form the characteristic equation and solve it:
$2 u_{n+2}-11 u_{n+1}+5 u_{n}=0$ will have characteristic equation

$$
\begin{aligned}
& 2 x^{2}-11 x+5=0 \\
\Rightarrow & (2 x-1)(x-5)=0 \\
\Rightarrow & x=\frac{1}{2} \quad \text { or } \quad x=5
\end{aligned}
$$

- Using Theorem 1 above with our two roots $a=\frac{1}{2}$ and $b=5$, our solution will be in the form:

$$
\begin{gathered}
u_{n}=l a^{n}+m b^{n} \\
\Rightarrow u_{n}=l\left(\frac{1}{2}\right)^{n}+m(5)^{n}
\end{gathered}
$$

- Now we use the other information we were given in the question:

$$
\text { If } \begin{aligned}
u_{0} & =2: \\
& \Rightarrow u_{0}=l\left(\frac{1}{2}\right)^{0}+m(5)^{0}=2 \\
& \Rightarrow l+m=2\left(\text { as }\left(\frac{1}{2}\right)^{0} \text { and }(5)^{0}=1\right)
\end{aligned} \quad \begin{aligned}
\text { If } u_{1} & =-8: \\
& \\
& \Rightarrow u_{1}=l\left(\frac{1}{2}\right)^{1}+m(5)^{1}=-8 \\
& \\
& \Rightarrow \frac{1}{2} l+5 m=-8 \\
& \\
& \Rightarrow l+10 m=-16 \quad \text { (multiplying by } 2)
\end{aligned}
$$

- We now solve the two simultaneous equations above giving $l=4$ and $m=-2$.
- So, the solution to our difference equation is: $u_{n}=4\left(\frac{1}{2}\right)^{n}-2(5)^{n}$.
- Example 2: Pg 156 Ex 8E Q9 Solve $u_{n+1}-4 u_{n}+4 u_{n-1}=0$ given $u_{0}=-1$ and $u_{1}=8$.

Solution:

- Again, we start by forming the characteristic equation and solving it:
$u_{n+1}-4 u_{n}+4 u_{n-1}=0$ will have characteristic equation

$$
\begin{aligned}
& x^{2}-4 x+4=0 \\
\Rightarrow & (x-2)(x-2)=0 \\
\Rightarrow & x=2 \quad \text { or } \quad x=2
\end{aligned}
$$

- Using Theorem 2 above with our two roots $a=2$ and $a=2$, our solution will be in the form:

$$
\begin{gathered}
\\
u_{n}=l a^{n}+m n a^{n} \\
\Rightarrow \\
u_{n}=l(2)^{n}+m n(2)^{n}
\end{gathered}
$$

- Using the other information given:

If $u_{0}=-1:$				
	$\Rightarrow u_{0}=l(2)^{0}+m(0)(2)^{0}=-1$			
	$\Rightarrow l=-1$		If u_{1}	$=8:$
---:	:---			
	$\Rightarrow u_{1}=l(2)^{1}+m(1)(2)^{1}=8$			
	$\Rightarrow 2 l+2 m=8$			
	$\Rightarrow 2(-1)+2 m=8$			
	$\Rightarrow m=5$			

- So, the solution to our difference equation is: $u_{n}=-1(2)^{n}+5 n(2)^{n}$, which can be written in a tidier way if we factorise out the 2^{n} : $u_{n}=2^{n}(5 n-1)$.
Day 1: Classwork Questions: Pg 156 Ex 8E Qs 1/2/6/8/11/12
Day 2: Classwork Questions: Pg 156/157 Ex 8E Qs 14/16/19/21

- Second Order Inhomogeneous Equations:

- Firstly, a reminder that inhomogeneous equations are ones of the form ones $u_{n+2}+u_{n+1}+u_{n} \pm A=0$ where A is some other function not related to u_{n}.
- To solve inhomogeneous equations there are two parts to the solution: the particular solution and the complementary solution.
- Example 1: Pg 160 Ex 8F Q4

Solve the difference equation $T_{n+2}-4 T_{n+1}+4 T_{n}=7 n-14$ given $T_{0}=1$ and $T_{1}=15$.

Solution:

- We begin by noticing that the right-hand side of the equation above is of the form $a n+b$, so our particular solution will be of that form i.e. $T_{n}=a n+b$
- So, $T_{n+1}=a(n+1)+b=a n+a+b$ and $T_{n+2}=a(n+2)+b=a n+2 a+b$
- Subbing into our initial equation gives:

$$
\begin{aligned}
& T_{n+2}-4 T_{n+1}+4 T_{n}=7 n-14 \\
\Rightarrow & a n+2 a+b-4(a n+a+b)+4(a n+b)=7 n-14 \\
\Rightarrow & a n-2 a+b=7 n-14
\end{aligned}
$$

- If we now compare the left-hand side to the right side, it can be seen that $a=7$ and $-2 a+b=-14$.
- Subbing in our value of a gives: $-2(7)+b=-14 \Rightarrow b=0$
- So, our particular solution in this case is: $T_{n}=a n+b=7 n$.
- We now find the complementary solution by solving the homogeneous equation $T_{n+2}-4 T_{n+1}+4 T_{n}=0$, which we learned how to do in the last section:

Characteristic Equation to solve: $x^{2}-4 x+4=0$

$$
\begin{aligned}
& \Rightarrow(x-2)(x-2)=0 \\
& \Rightarrow x-2=0 \quad \text { or } \quad x-2=0 \\
& \Rightarrow x=2
\end{aligned} \quad \text { or } \quad x=2
$$

- Using Theorem 2 above with our two roots $a=2$ and $a=2$, our solution will be in the form:

$$
T_{n}=l a^{n}+m n a^{n} \Rightarrow T_{n}=l(2)^{n}+m n(2)^{n}
$$

- To get the final solution, we add the particular solution and the complementary solution: $\quad T_{n}=l(2)^{n}+m n(2)^{n}+7 n$

$$
\begin{array}{|l|l}
\hline \text { If } T_{0}=1: & \text { If } T_{1}=15: \\
& \Rightarrow T_{0}=l(2)^{0}+m(0)(2)^{0}+7(0)=1 \\
& \Rightarrow l=1 \\
& \Rightarrow T_{1}=l(2)^{1}+m(1)(2)^{1}+7(1)=15 \\
& \Rightarrow 2 l+2 m+7=15 \\
& \Rightarrow 2(1)+2 m+7=15 \\
& \\
& \Rightarrow 2 m=6 \\
& \Rightarrow m=3 \\
\hline
\end{array}
$$

- So, the final solution to our difference equation is: $T_{n}=1(2)^{n}+3 n(2)^{n}+7 n$, which can be written in a tidier way if we factorise out the $2^{n}: u_{n}=2^{n}(3 n+1)+7 n$.

- Example 2:

Solve the difference equation $2 u_{n+2}-u_{n+1}-3 u_{n}=3^{n}$ given $u_{0}=3$ and $u_{1}=-5$.
Solution:

- This time the right-hand side is in the form $k .3^{n}$ so our solution will be of that form i.e. $u_{n}=a .3^{n}+b$.
- So,

$$
u_{n+1}=a \cdot 3^{(n+1)}+b=k \cdot 3^{n} \cdot 3^{1}+b=3 k \cdot 3^{n}+b \text { and } u_{n+2}=k \cdot 3^{(n+2)}+b=k \cdot 3^{n} \cdot 3^{2}+b=9 k \cdot 3^{n}+b
$$

- Subbing these expressions into the equation we were asked to solve initially gives:

$$
\begin{aligned}
& 2 u_{n+2}-u_{n+1}-3 u_{n}=3^{n} \\
& \Rightarrow 2\left(9 k \cdot 3^{n}+b\right)-\left(3 k \cdot 3^{n}+b\right)-3\left(k \cdot 3^{n}+b\right)=3^{n}
\end{aligned}
$$

- If we factorise out the 3^{n} on the left-hand side:

$$
\begin{aligned}
& 3^{n}(18 a-3 a-3 a)-2 b=3^{n} \\
& \quad \Rightarrow 3^{n}(12 a)-2 b=3^{n}
\end{aligned}
$$

- For this to be true 12 a must be equal to 1

$$
\begin{array}{llrl}
\Rightarrow 12 a=1 & \text { and } & -2 b=0 \\
\Rightarrow a=\frac{1}{12} & \text { and } & b=0
\end{array}
$$

- So, our particular solution is: $u_{n}=\frac{1}{12} \cdot 3^{n}$.
- As in example 1, we now must find the complementary solution by solving the associated characteristic equation:

$$
\begin{aligned}
& 2 x^{2}-x+3=0 \\
& \Rightarrow(2 x-3)(x+1)=0 \\
& \Rightarrow x=\frac{3}{2} \quad \text { or } \quad x=-1
\end{aligned}
$$

- As we have two roots our complementary solution will be in the form $u_{n}=l a^{n}+m b^{n}$ where $\mathrm{a}=\frac{3}{2}$ and $\mathrm{b}=-1: \quad \Rightarrow u_{n}=l\left(\frac{3}{2}\right)^{n}+m(-1)^{n}$
- We now combine the particular and complementary solutions again to get the full solution: $u_{n}=l\left(\frac{3}{2}\right)^{n}+m(-1)^{n}+\frac{1}{12} \cdot 3^{n}$
- Using the other information given in the question to find I and m :

$$
\begin{array}{|r|r|rl}
\text { If } u_{0} & =3: & \text { If } u_{1}=-5: \\
& \Rightarrow u_{0}=l\left(\frac{3}{2}\right)^{0}+m(-1)^{0}+\frac{1}{12} \cdot 3^{0}=3 & & \Rightarrow u_{1}=l\left(\frac{3}{2}\right)^{1}+m(-1)^{1}+\frac{1}{12} \cdot 3^{1}=-5 \\
& \Rightarrow l+m=3-\frac{1}{12} & & \Rightarrow \frac{3}{2} l-m+\frac{1}{4}=-5 \\
& \Rightarrow 12 l+12 m=35 & & \Rightarrow 6 l-4 m+1=-20 \\
& & \Rightarrow 6 l-4 m=-21
\end{array}
$$

- Solving these two simultaneous equations gives: $l=-\frac{14}{15}$ and $m=\frac{77}{20}$, so our final solution will be: $\quad u_{n}=\left(-\frac{14}{15}\right)\left(\frac{3}{2}\right)^{n}+\left(\frac{77}{20}\right)(-1)^{n}+\frac{1}{12} \cdot 3^{n}$
Day 1: Classwork Questions: Pg 160 Ex 8F Qs 3/6/8
Day 2: Classwork Questions: Pg 160 Ex 8F Qs 14/15/16
Revision Questions and Test

