Topic 13: Trigonometry

1) The Basics:

2) Right Angled Triangles:

a) Pythagoras' Theorem:

Notes:

- We can use Pythagoras' Theorem if we know two sides of a right-angled triangle and we want to find the third side i.e.

- Make sure and label the hypotenuse correctly when using this theorem.

b) Sine, Cosine, Tan Ratios:

Notes:

- ' θ ' is a Greek letter called 'theta'. It is often used to represent angles.
- Another way to remember the \sin , \cos and tan ratios is Silly Old Harry, Caught A Herring, Trawling Off America (SOHCAHTOA)

3) Non-Right Angled Triangles:

Sine Rule:

- Used if you know a side and its opposite angle
- \quad Side ' a ' must be across from angle ' A ' and the same for ' b ' and ' B '

Example:

$$
\begin{aligned}
& \frac{a}{\operatorname{Sin} A}=\frac{b}{\operatorname{Sin} B} \\
& \frac{x}{\operatorname{Sin} 80}=\frac{7}{\operatorname{Sin} 60} \\
& x(\operatorname{Sin} 60)=7(\operatorname{Sin} 80) \quad(\text { Cross } \\
& \text { Multiply }) \\
& \Rightarrow x=\frac{7(\operatorname{Sin} 80)}{\operatorname{Sin} 60}(\div \text { both sides by } \\
& \operatorname{Sin} 60) \\
& \Rightarrow x=7.96
\end{aligned}
$$

4) Special Angles/Unit Circle:

a) Special Angles:

- Use the table below (pg 13 of Tables) to write down the sin, cos or tan of the angles shown, in the form $\frac{a}{b}$

A (degrees)	0°	90°	180°	270°	30°	45°	60°
A (radians)	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
$\cos A$	1	0	-1	0	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
$\sin A$	0	1	0	-1	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$
$\tan A$	0	-	0	-	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

- Useful to know the right-angled triangles these ratios come

$$
\begin{aligned}
& \sin 30=\frac{O P P}{H Y P}=\frac{1}{2} \\
& \cos 30=\frac{A D J}{H Y P}=\frac{\sqrt{3}}{2} \\
& \operatorname{Tan} 60=\frac{O P P}{A D J}=\frac{\sqrt{3}}{1}
\end{aligned}
$$

- Can also to simplify expressions into surd form Example: Write $\cos 30+\sin 30$ in surd form.

$$
\cos 30+\sin 60=\frac{\sqrt{3}}{2}+\frac{1}{2}=\frac{\sqrt{3}+1}{2}
$$

Cosine Rule

- Used if Sine Rule can't be used
- The side you label ' a ' must be across from the angle you label ' A '. Label the unknown side ' a ' or label the unknown angle ' A '.

Example:

Find $\|Q R\|$ in the		
diagram below. P		Label unknown side ' a '
:---:		
$\Rightarrow 70$ angle $=A^{\prime}$		
$a^{2}=b^{2}+c^{2}-2 b c \cos A$		

Label unknown side ' a '

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

$$
a^{2}=(13)^{2}+(4)^{2}-2(13)(4) c \cos 70
$$

$$
a^{2}=185-35.57
$$

$$
a^{2}=149.43
$$

$$
a=12.22
$$

b) Unit Circle:

Notes:

- Need to be able to write sin, cos and tan of angles that are bigger than 90 in surd form, without a calculator.

Examples: Write i) $\sin 150$ and ii) $\cos 225$ iii) $\sin 300$ in surd form
i) 150 in quadrant $2=>$ will be positive for \sin

$$
\text { Ref Angle }=180-\theta=150 \Rightarrow \theta=30^{\circ}
$$

$$
\Rightarrow \sin 150=+\sin 30=+\frac{1}{2}
$$

ii) 225 in quadrant $3=>$ will be negative for cos

Ref Angle $=180+\theta=225 \Rightarrow \theta=45^{\circ}$
$\Rightarrow \cos 225=-\cos 45=-\frac{1}{\sqrt{2}}$
iii) 300 in quadrant $4 \Rightarrow>$ will be negative for \sin

Ref Angle $=360-\theta=300 \Rightarrow \theta=60^{\circ}$
$\Rightarrow \sin 300=-\sin 60=-\frac{\sqrt{3}}{2}$

5) Radians/Sectors:

a) Radians:

Notes:

> An alternative way of measuring angles.
> To convert between radians and degrees, we use:

Example: i) Convert 145° to radians and ii) Convert $\frac{3 \pi}{4}$ to degrees

$$
\begin{aligned}
& \text { i) } 180^{\circ}=\pi \text { radians } \\
& 1^{\circ}=\frac{\pi}{180} \quad(\div 180) \\
& 145^{\circ}=\frac{\pi}{180} \times 145 \quad(\times 145) \\
& =\frac{29 \pi}{36} \text { radians }
\end{aligned}
$$

ii)

$$
\frac{3 \pi}{4}=\frac{3(180)}{4}=135^{\circ}
$$

b) Sectors:

θ in degs	θ in rads
$L=2 \pi r\left(\frac{\theta}{360}\right)$	$L=r \theta$
$A=\pi r^{2}\left(\frac{\theta}{360}\right)$	$A=\frac{1}{2} r^{2} \theta$

Tables pg 9

Example: Find i) the area and ii) length of a sector of radius 5 cm with angle $\frac{2 \pi}{3}$ radians at the centre.
i)

$$
\begin{gathered}
A=\frac{1}{2} r^{2} \theta \\
A=\frac{1}{2}(5)^{2}\left(\frac{2 \pi}{3}\right) \\
=216.18 \mathrm{~cm}^{2}
\end{gathered}
$$

ii)

$$
\begin{aligned}
& l=r \theta \\
& l=(5)\left(\frac{2 \pi}{3}\right) \\
& =10.47 \mathrm{~cm}
\end{aligned}
$$

6) Periodic Functions/Sin, Cos Graphs:

a) Periodic Functions:

Notes:

> A function that repeats itself every so often.
> The range of a function are the lowest and biggest the y-values can be.....written in the form [Ymin, $\left.Y_{\text {max }}\right]$
$>$ The period is how often the function repeats itself.
b) Graphs of Tangent Function:

Notes:
> Asymptotes at $90^{\circ}, 270^{\circ} \ldots$.

d) Effect of changing ' a ' in $a \operatorname{Sin}(n x)$ or $a \operatorname{Cos}(n x)$:

e) Effect of changing ' n ' in $a \operatorname{Sin}(n x)$ or $a \operatorname{Cos}(n x)$:

c) Graphs of Sine/Cosine Functions:

Notes:
> Range of both is $[-1,1]$.
$>$ Period of both is 360°.

f) Effect of adding a constant to $\operatorname{Sin} / \operatorname{Cos}$

 function:

Example: Graph the function $y=3 \sin 2 \theta,-\pi \leq \theta \leq \pi$.

7) Solving Trig Equations:

Steps:

1. Ignore the sign and calculate the reference angle
2. Use the sign to decide what 2 quadrants your answers are in.
3. Use unit circle to find the angle in each of the 2 quadrants.
4. If the angle is a double or triple angle e.g. $3 A$, then add on multiples of 360 to the answers from step 3.
5. Divide your list of answers by the coefficient of the angle we're looking for, to get a list of solutions.
6. Eliminate any answers outside the range stated in the question. Example 1: Solve $\cos B=\frac{1}{\sqrt{2}}$, where $0 \leq A \leq 360^{\circ}$.
Step 1: Ignore the sign and calculate reference angle i.e.
Reference Angle $\theta=\cos ^{-1} \frac{1}{\sqrt{2}}=45^{\circ}$
Step 2: Use the sign to decide what quadrants your answers are in:

Cosine is positive in Quadrants 1 and 4
Step 3: Use the unit circle to find the angle in each of the 2 quadrants from step 2.

Quadrant 1: $\theta=45^{\circ}$
Quadrant 4: $360-\theta=360-45=315^{\circ}$

Example 2: Solve $\sin 2 A=-\frac{1}{2}$, where $0 \leq A \leq 360^{\circ}$.
Step 1: Ignore the sign and calculate reference angle i.e.
Reference Angle $\theta=\sin ^{-1} \frac{1}{2}=30^{\circ}$
Step 2: Use the sign to decide what quadrants your answers are in:

Sine is negative => Quadrants 3 and 4
Step 3: Use the unit circle to find the angle in each of the 2 quadrants from step 2.

Quad 3: $180+\theta=210^{\circ} \quad$ Quad 4: $360-\theta=330^{\circ}$
Step 4: If the angle is a double or triple angle e.g. $3 A$, then add on multiples of 360 to the answers from step 3. $210^{\circ}, 330^{\circ}, 570^{\circ}, 690^{\circ}, 930^{\circ} \ldots$.
Step 5: Divide your list of answers by the coefficient of the angle we're looking for, to get a list of solutions...in this case '2' $105^{\circ}, 115^{\circ}, 285^{\circ}, 345^{\circ}, 465^{\circ} \ldots$.
Step 6: Eliminate any answers outside the required range:
$>$ Only interested here in angles between 0 and 360° so we exclude the 465°, so our final solution is:
$A=105^{\circ}, 115^{\circ}, 285^{\circ}, 345^{\circ}$

8) Trig Identities:

Compound Angle Formulae 1. $\cos (A+B)=\cos A \cos B-\sin A \sin B$ 2. $\cos (A-B)=\cos A \cos B+\sin A \sin B$ 3. $\sin (A+B)=\sin A \cos B+\cos A \sin B$ 4. $\sin (A-B)=\sin A \cos B-\cos A \sin B$ 5. $\tan (A+B)=\frac{\tan A+\tan B}{1-\operatorname{tanAtan} B}$ 6. $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$ Products to Sums and Differences 14. $2 \cos A \cos B=\cos (A+B)+\cos (A-B)$ 15. $2 \sin A \cos B=\sin (A+B)+\sin (A-B)$ 16. $2 \sin A \sin B=\cos (A-B)-\cos (A+B)$ 17. $2 \cos A \sin B=\sin (A+B)-\sin (A-B)$ 22. $\cos ^{2} A+\sin ^{2} A=1$	Double Angle Formulae 7. $\cos 2 A=\cos ^{2} A-\sin ^{2} A$ 8. $\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}$ 9. $\sin 2 A=2 \sin A \cos A$ 10. $\cos ^{2} A=\frac{1}{2}(1+\cos 2 A)$ 11. $\cos 2 A=\frac{1-\tan ^{2} A}{1+\tan ^{2} A}$ 12. $\sin ^{2} A=\frac{1}{2}(1-\cos 2 A)$ 13. $\sin 2 A=\frac{2 \tan A}{1+\tan ^{2} A}$ Sums and Differences to Products 18. $\cos A+\cos B=2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}$ 19. $\cos A-\cos B=-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}$ 20. $\sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$ 21. $\sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}$
Example 1: Express cos75 in surd form, without using a calculator. > Break up the angle into a combination of the special angles 35° and $40^{\circ} \Rightarrow \cos 75=\cos (45+30)$ > Use identity 1 to rewrite the expression on the right above as: $\begin{aligned} & \cos (A+B)=\cos A \cos B-\sin A \sin B \\ & \cos (45+30)=\cos 45 \cos 30-\sin 45 \sin 30 \\ & =\left(\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right)+\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right) \\ & =\left(\frac{\sqrt{3}}{2 \sqrt{2}}\right)+\left(\frac{1}{2 \sqrt{2}}\right) \\ & =\frac{\sqrt{3}+1}{2 \sqrt{2}} \end{aligned}$	Example 2: If $\tan (A+B)=8$ and $\tan A=2$, find the value of tanB. > Use identity 5 to rewrite an expression for $\tan (A+B)$ $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan \tan B} \quad \Rightarrow \frac{\tan A+\tan B}{1-\tan \tan B}=8$ Cross-multiplying gives: $\tan A+\tan B=8(1-\tan A \tan B)$ $\Rightarrow \tan A+\tan B=8-8 \tan A \tan B$ > We can now fill in the value of $\tan A$, which we were given in the question and solve for tanB: $\begin{aligned} & \Rightarrow 2+\tan B=8-8(2) \tan B \\ & \Rightarrow 2+\tan B=8-16 \tan B \\ & \Rightarrow \tan B=\frac{6}{17} \end{aligned}$

