Topic 13: Trigonometry

1) The Basics:

2) Right Angled Triangles:

3) Non-Right Angled Triangles:

4) Special Angles/Unit Circle:

b) Unit Circle: a) Special Angles: Use the table below (pg 13 of Tables) to write down the sin, Notes: cos or tan of the angles shown, in the form $\frac{a}{r}$. 0° 90° 180° 270° 30° 45° 60° Α (degrees) 3π A (radians) 0 π 2 3 1 6 4 2 1 0 $\sqrt{3}$ cos A 1 0 -1 $\sqrt{2}$ 2 2 sin A 0 1 0 -1 1 1 $\sqrt{3}$ 2 $\sqrt{2}$ 2 1 $\sqrt{3}$ tan A 0 0 _ 1 $\sqrt{3}$ Useful to know the right-angled triangles these ratios come from. e.g. $Sin 30 = \frac{OPP}{HYP} = \frac{1}{2}$ $Cos 30 = \frac{ADJ}{HYP} = \frac{\sqrt{3}}{2}$ $Tan 60 = \frac{OPP}{ADJ} = \frac{\sqrt{3}}{1}$ form 60 30° $\sqrt{3}$ Can also to simplify expressions into surd form **Example:** Write cos30 + sin30 in surd form. $cos30 + sin60 = \frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{\sqrt{3} + 1}{2}$

• Need to be able to write sin, cos and tan of angles that are bigger than 90 in surd form, without a calculator.

Examples: Write i) sin 150 and ii) cos225 iii) sin 300 in surd form

i) 150 in quadrant 2 => will be positive for sin Ref Angle = $180 - \theta = 150 \Rightarrow \theta = 30^{\circ}$ => sin150 = + sin30 = $+\frac{1}{2}$ ii) 225 in quadrant 3 => will be negative for cos Ref Angle = $180 + \theta = 225 \Rightarrow \theta = 45^{\circ}$ => cos225 = - cos 45 = $-\frac{1}{\sqrt{2}}$ iii) 300 in quadrant 4 => will be negative for sin Ref Angle = $360 - \theta = 300 \Rightarrow \theta = 60^{\circ}$

=> sin300 = - sin60 =
$$-\frac{\sqrt{3}}{2}$$

5) Radians/Sectors:

7) Solving Trig Equations:

Steps:	Example 2: Solve $\sin 2A = -\frac{1}{2}$, where $0 \le A \le 360^\circ$.
1. Ignore the sign and calculate the reference angle	Step 1: Ignore the sign and calculate reference angle i.e.
2. Use the sign to decide what 2 quadrants your answers are in.	Reference Angle $\theta = \sin^{-1}\frac{1}{2} = 30^{\circ}$
 Use unit circle to find the angle in each of the 2 quadrants. If the angle is a double or triple angle e.g. 3A, then add on 	Step 2: Use the sign to decide what quadrants your answers are in:
multiples of 360 to the answers from step 3.	Sine is negative => Quadrants 3 and 4
looking for, to get a list of solutions.	Step 3: Use the unit circle to find the angle in each of the 2 audgrapts from step 2
6. Eliminate any answers outside the range stated in the question.	Quad 3: $180 + \theta = 210^{\circ}$ Quad 4: $360 - \theta = 330^{\circ}$
Example 1: Solve $\cos B = \frac{1}{\sqrt{2}}$, where $0 \le A \le 360^{\circ}$.	Step 4: If the angle is a double or triple angle e.g. 3A, then add
Step 1: Ignore the sign and calculate reference angle i.e.	on multiples of 360 to the answers from step 3.
Reference Angle $\theta = \cos^{-1} \frac{1}{\sqrt{2}} = 45^{\circ}$	210°, 330°, 570°, 690°, 930°
Step 2: Use the sign to decide what quadrants your answers are	Step 5: Divide your list of answers by the coefficient of the angle
in	we're looking for, to get a list of solutionsin this case '2'
Cosine is positive in Quadrants 1 and 4	105°, 115°, 285°, 345°, 465°
Step 3: Use the unit circle to find the angle in each of the 2	Step 6: Eliminate any answers outside the required range:
quadrants from step 2.	> Only interested here in angles between 0 and 360° so we
Quadrant 1: θ = 45°	exclude the 465°, so our final solution is:
Quadrant 4: 360 - θ = 360 - 45 = 315°	A = 105°, 115°, 285°, 345°

<u>8) Trig Identities:</u>

Compound Angle Formulae	Double Angle Formulae
$1.\cos(A+B) = \cos A \cos B - \sin A \sin B$	$7.\cos 2A = \cos^2 A - \sin^2 A$
$2.\cos(A-B) = \cos A \cos B + \sin A \sin B$	8. $\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$
$3.\sin(A+B) = sinAcosB + cosAsinB$	9. $\sin 2A = 2sinAcosA$
$4.\sin(A-B) = sinAcosB - cosAsinB$	10. $\cos^2 A = \frac{1}{2}(1 + \cos 2A)$
5. $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$	2 $1 - tan^2 A$
$(4 \tan(A - \tan B)) = \tan A - \tan B$	11. $\cos 2A = \frac{1}{1 + \tan^2 A}$
$\frac{1}{1 + tanAtanB}$	12. $sin^2 A = \frac{1}{2}(1 - cos2A)$
	Tables 2tan A
$\frac{\text{Products to Sums and Differences}}{14. 2 \cos A \cos B} = \cos(A + B) + \cos(A - B)$	13. $\sin 2A = \frac{2\tan A}{1 + \tan^2 A}$
15 $2 \sin 4 \cos R = \sin (A + R) + \sin (A - R)$	
15. $2SURACOSD = SIII(A + B) + SIII(A - B)$	Sums and Differences to Products
16. $2sinAsinB = cos(A - B) - cos(A + B)$	18. $cosA + cosB = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$
17. $2\cos A\sin B = \sin(A+B) - \sin(A-B)$	19. $cosA - cosB = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$
	$20.\ sinA + sinB = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$
$22.\ \cos^2 A + \sin^2 A = 1$	$21. \ sinA - sinB = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$
Example 1: Express cos75 in surd form, without using a calculator.	Example 2: If tan(A + B) = 8 and tanA = 2, find the value of tanB.
> Break up the angle into a combination of the special angles	 Use identity 5 to rewrite an expression for tan(A + B)
35° and 40° => cos75 = cos(45 + 30)	$tan(A + B) = \frac{tanA + tanB}{1 + tanAtanB} \implies \frac{tanA + tanB}{1 + tanAtanB} = 8$
Use identity 1 to rewrite the expression on the right above	 Cross-multiplying gives:
	tanA + tanB = 8(1 - tanAtanB)
$\cos(A + B) = \cos A \cos B - \sin A \sin B$	\Rightarrow tanA + tanB = 8 - 8tanAtanB
$\cos(40 + 30) = \cos(40 \cos(30 - \sin(40)))$	> We can now fill in the value of tanA, which we were given in
$= \left(\frac{1}{\sqrt{2}}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{2}\right)$	the question and solve for tanB: = 2 + tanB = 9 + 9(2)tanB
$=\left(\frac{\sqrt{3}}{2\sqrt{5}}\right)+\left(\frac{1}{2\sqrt{5}}\right)$	= 2 + tanB = 8 - 8 - 16tanB
$\frac{2\sqrt{2}}{\sqrt{3}} + 1$	$-72 \pm tanb = 6$
$=\frac{1}{2\sqrt{2}}$	$=$ $\iota u n D = \frac{1}{17}$