Topic 6: Algebra

1) The Basics:

a) Adding / Subtracting Algebraic Expressions:

Notes:

- > We can only add / subtract 'like terms'.
- 'Like terms' are terms that have the same letter part or the same variables
 - e.g. 5d and -2d are 'like terms' but 5d and $5\mbox{d}^2$ are \mbox{NOT} 'like terms'

Example 1:

Example 2:

$$\frac{3x^2y - 4y^2 - x^2y - 3y + 2y^2}{2x^2y - 2y^2 - 3y}$$

b) Multiplying Expressions:

Notes:

- When multiplying we follow the order Signs, Numbers, Letters
- > When multiplying the letters together we must remember the first law of indices..... $a^m \times a^n = a^{m+n}$ i.e. Add the Powers

Example 1: Multiplying Terms

Example 2: Removing Brackets

$$2(g + 4)$$

= $2q + 8$

Example 3: Removing Brackets

$$(2x-3)(x+2)$$
 ("Split and Repeat")
= $2x(x+2) - 3(x+2)$
= $2x^2 + 4x - 3x - 6$
= $2x^2 + x - 6$

2) Adding/Subtracting Algebraic Fractions:

a) Adding Fractions:

Note:

When adding/subtracting fractions together we find the common denominator and bring both terms up to the same denominator first.

Example 1:

$$\frac{x+3}{5} - \frac{2x-1}{3}$$

$$= \frac{3(x+3)}{15} - \frac{5(2x-1)}{15}$$

$$= \frac{3x+9}{15} - \frac{10x-5}{15}$$

$$= \frac{3x+9-(10x-5)}{15}$$

$$= \frac{3x+9-10x+5}{15}$$

$$= \frac{-7x+14}{15}$$

b) Subtracting Fractions:

Example 2:

$$\frac{5}{x+3} - \frac{2}{x-4}$$

$$= \frac{5(x-4)}{(x+3)(x-4)} - \frac{2(x+3)}{(x+3)(x-4)}$$

$$= \frac{5(x-4) - 2(x+3)}{(x+3)(x-4)}$$

$$= \frac{5x - 20 - 2x - 6}{(x+3)(x-4)}$$

$$= \frac{3x - 26}{(x+3)(x-4)}$$

Note: A shortcut we can use when doing the type of questions

above:

$$\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{bd}$$

3) Pascal's Triangle/Binomial Expansion:

<u>a) Pascal's Triangle:</u>

Notes:

$$(x + y)^{1} = 1x + 1y$$

$$(x + y)^{2} = 1x^{2} + 2xy + 1y^{2}$$

$$(x + y)^{3} = 1x^{3} + 3x^{2}y + 3xy^{2} + 1y^{3}$$

$$(x + y)^{4} = 1x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + 1y^{4}$$

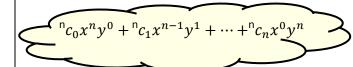
Example: Use Pascal's Triangle to expand (3a + 2)4.

- We have a power of 4 here so we'll be following the 4th line of Pascal's Triangle above i.e. $(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$
- In this case, our x = 3a and y = 2 so we can fill those in now.....

$$(3a + 2)^4 = 1(3a)^4 + 4(3a)^3(2) + 6(3a)^2(2)^2 + 4(3a)(2)^3 + 1(2)^4$$
$$= 81a^4 + 216a^3 + 216a^2 + 96a + 16$$

b) Binomial Expansion:

The expansion of $(x + y)^n$ is given by:



Example: Expand (1 + 5y)4.

$$(1+5y)^4 = {}^4c_0(1)^4(5y)^0 + {}^4c_1(1)^3(5y)^1 + \dots + {}^4c_4(1)^0(5y)^4$$

= 1 + 4(5y) + 6(1)(25y²) + 4(1)(125y³) + 1(1)(625y⁴)
= 1 + 20y + 150y² + 600y³ + 625y⁴

4) Multiplication of Algebraic Fractions:

Example 1: Simplify
$$\frac{x-2}{x} \times \frac{3x^2}{x^2-4}$$
.

$$= \frac{x-2}{x} \times \frac{3x^2}{x^2-4}$$

$$= \frac{x-2}{x} \times \frac{3x^2}{(x-2)(x+2)}$$
 (Factorising the x^2-4)

$$= \frac{1}{1} \times \frac{3x}{x+2}$$
 (Cancelling the x - 2 and the x on diagonals)
$$= \frac{3x}{x+2}$$

Example 2: Simplify
$$\frac{5x^2 - 45}{3x^2 - 7x + 4} \times \frac{8x(3x - 4)}{2x^2 - 6x}$$
.

$$\frac{5x^2 - 45}{3x^2 - 7x + 4} \times \frac{8x(3x - 4)}{2x^2 - 6x}$$

$$= \frac{5(x^2 - 9)}{(3x - 4)(x - 1)} \times \frac{8x(3x - 4)}{2x(x - 3)}$$

$$= \frac{5(x - 3)(x + 3)}{(3x - 4)(x - 1)} \times \frac{9x(3x - 4)}{2x(x - 3)}$$

$$= \frac{5(x + 3)}{(x - 1)} \times \frac{4}{1}$$

$$= \frac{20x + 60}{x - 1}$$

5) Division of Algebraic Expressions/Fractions:

a) Dividing Expressions:

<u>Tip:</u> Can we factorise the numerator or the denominator? <u>Example:</u>

$$\frac{2x+6}{x^2-9} = \frac{2(x+3)}{(x+3)(x-3)} = \frac{2}{x-3}$$

b) Long Division:

Note: Remember: "Daddy, Mammy, Sister Brother", which stands for Divide, Multiply, Subtract, Bring Down

Example:

Simplify
$$\frac{x^3 - 5x^2 + 10x - 12}{x - 3}$$
.

$$\begin{array}{r}
 x^2 - 2x + 4 \\
 x - 3\sqrt{x^3 - 5x^2 + 10x - 12} \\
 - \underline{x^3 \pm 3x^2} \\
 -2x^2 + 10x \\
 \pm 2x^2 + 6x \\
 -4x - 12 \\
 -4x \pm 12 \\
 0
 \end{array}$$

e) Unknown Coefficients:

Example: If $x^2 + px + r$ is a factor of $x^3 + 2px^2 + 9x + 2r$, find p.a.r.

$$x + p$$

$$x^{2} + px + r$$

$$x^{3} + 2px^{2} + 9x + 2r$$

$$x^{3} + px^{2} + rx$$

$$px^{2} + (9 - r)x + 2r$$

$$(-) + (-) + (-) + (-)$$

$$px^{2} + p^{2}x + pr$$

$$(9 - r - p^{2})x + (2r - pr)$$

- x^2 + px + r is a factor, so we should have no remainder.
- If we let each part of the remainder above = 0, then we can use the two equations to solve for p and r:

$$2r - pr = 0$$
 and $9 - r - p^2 = 0$
 $\Rightarrow 2r = pr$ $9 - r - (2)^2 = 0$
 $\Rightarrow p = 2$ $9 - r - 4 = 0$
 $\Rightarrow 5 - r = 0$
 $\Rightarrow r = 5$

c) Dividing Algebraic Fractions 1:

Example: Simplify
$$\frac{3x-2}{x^2+5x+6} \div \frac{3x^2-2x}{x(x+2)}$$
.

$$\frac{3x-2}{x^2+5x+6} \div \frac{3x^2-2x}{x(x+2)}$$

$$= \frac{3x-2}{x^2+5x+6} \times \frac{x(x+2)}{3x^2-2x}$$

$$= \frac{3x-2}{(x+2)(x+3)} \times \frac{x(x+2)}{x(3x-2)}$$

$$= \frac{3x-2}{(x+2)(x+3)} \times \frac{x(x+2)}{x(3x-2)}$$

$$= \frac{1}{x(x+2)}$$

d) Dividing Algebraic Fractions 2:

Sometimes we can have a fraction in the numerator or the

Example 1: Simplify $\frac{1-\frac{4}{a^2}}{1+\frac{2}{a}}$.

- There are two different ways we can approach these types of auestions:

Method 1: (Tidy up numerator and denominator to a single fraction first)

$$= \frac{\frac{a^2 - 4}{a^2}}{\frac{a + 2}{a}}$$

$$= \frac{(a + 2)(a - 2)}{a} x \frac{a}{a + 2}$$

$$= \frac{a - 2}{a}$$

Method 2: (Multiply above and below by something)

$$= \frac{1 - \frac{4}{a^2}}{1 + \frac{2}{a}} \times \frac{a^2}{a^2}$$

$$= \frac{a^2 - 4}{a^2 + 2a}$$

$$= \frac{(a - 2)(a + 2)}{a(a + 2)} = \frac{a - 2}{a}$$

6) Factorising and Manipulation of Formulae:

a) Factorising:

1. Taking out the HCF (taking out what's common)

e.g.s i)
$$2x - 10 = 2(x - 5)$$
 ii) $3x^2 - 18x = 3x(x - 6)$

2. Grouping (always has 4 terms)

e.g.s i)
$$ax + ay + bx + by$$
 ii) $3p - 3q - pk + kq$
= $a(x + y) + b(x + y)$ = $3(p - q) - k(p - q)$
= $(x + y)(a + b)$ = $(p - q)(3 - k)$

3. Quadratic (always has 3 terms x^2 , x, a)

e.g.s i)
$$x^2 + 5x + 6$$
 ii) $x^2 - 3x - 18$
= $(x + 3)(x + 2)$ = $(x - 6)(x + 3)$

4. Difference of 2 Squares (always 2 terms with a '-' between)

Note: Watch for square numbers: 1, 4, 9, 16, 25, 36, 49, 64, 81....

e.g.s i)
$$x^2 - 9y^2$$
 ii) $16a^2 - 25b^2$
= $(x)^2 - (3y)^2$ = $(4a)^2 - (5b)^2$
= $(x - 3y)(x + 3y)$ = $(4a - 5b)(4a + 5b)$

5. Sum/Difference of 2 Cubes

$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$

$$x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$$

Examples: Factorise: i)
$$64p^3 - 27r^3$$
 and ii) $5x^3 - 625v^3$

Examples: Factorise: i)
$$64p^3 - 27r^3$$
 and ii) $5x^3 - 625y^3$
i) $64p^3 - 27r^3$ ii) $5x^3 - 625y^3$
= $(4p)^3 - (3r)^3$ = $5(x^3 - 125y^3)$
= $(4p - 3r)[(4p)^2 + (4p)(3r) + (3r)^2]$ = $5[(x)^3 - (5y)^3]$

= $(4p - 3r)(16p^2 + 12pr + 9r^2)$ = $5(x - 5y)(x^2 + 5xy + 25y^2)$

7) Solving Equations:

b) Manipulation of Formulae:

Steps:

- 1) Get rid of any brackets, fractions or square roots.
- 2) Bring all terms with the letter you want to the LHS and move everything else to the RHS.
- 3) Factorise out the letter you want (if necessary).
- 4) Divide both sides to leave the letter you want on the LHS.

Example: Write r, in terms of p and q.

$$\sqrt{\frac{p}{r-q}} = p$$

$$\Rightarrow \left(\sqrt{\frac{p}{r-q}}\right)^2 = (p)^2 \text{ (Squaring both sides to get rid of } \sqrt{}\text{)}$$

$$\Rightarrow \frac{p}{r-q} = p^2$$

$$\Rightarrow p = p^2(r-q) \text{ (Multiplying both sides by (r - q))}$$

$$\Rightarrow p = p^{2}(r - q)$$
 (Multiplying both sides by $(r - q)$)
$$\Rightarrow p = p^{2}r - p^{2}q$$

$$\Rightarrow -p^2r = -p - p^2q \qquad \qquad \text{(Bringing term with r to LHS)}$$

$$\Rightarrow p^2r = p + p^2q$$
 (Changing all the signs)

$\Rightarrow r = \frac{p + p^2 q}{n^2}$ (dividing both sides by p^2)

a) Solving Linear Equations: (x only)

Steps:

- 1. Remove all brackets and any fractions
- Bring all terms with an 'x' to one side and numbers to the other side
- Tidy up both sides by putting together 'like terms'. 3
- 4. Solve the simple equation remaining.

Example:
$$2(x-3) = 4(x+1)$$

 $2x-6 = 4x+4$
 $2x-4x = 4+6$
 $-2x = 10$
 $x = \frac{10}{-2}$

c) Solving Quadratic Eqns by factorising: (Eqns with an x^2)

- 1. Bring all terms to the left-hand side (LHS) and leave '0' on the RHS
- 2. Factorise the LHS (See section on Factorising in previous
- 3. If LHS can't be factorised the 'Quadratic Formula' needs to be used (See Example 3 on the right)
- 4. Let each factor be = 0
- 5. Solve the two simple equations to find the two answers.

Example 1:
$$x^2 - 3x - 18 = 0$$

 $(x - 6)(x + 3) = 0$
 $x - 6 = 0$ or $x + 3 = 0$
 $\Rightarrow x = 6$ or $x = -3$
Example 2: $4x^2 - 25 = 0$
 $(2x - 5)(2x + 5) = 0$
 $2x - 5 = 0$ or $2x + 5 = 0$

=> 2x = 5 or 2x = -5 $=> x = \frac{5}{3}$ or $x = \frac{-5}{3}$

b) Solving Linear Equations With Fractions:

Tip:

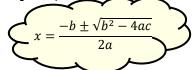
"Kill" all fractions first by multiplying all terms by something that ALL denominators divide into.

Example: Solve
$$\frac{2x-3}{4} + \frac{x+6}{5} = \frac{3}{2}$$

In this case 20 will kill the fractions, so multiply across by 20:
$$\frac{20(\frac{2x-3}{4}) + 20(\frac{x+6}{8}) = 20(\frac{3}{2})}{5(2x-3) + 4(x+6) = 10(3)}$$
$$10x - 15 + 4x + 24 = 30$$
$$10x + 4x = 30 + 15 - 24$$
$$14x = 21$$
$$\Rightarrow x = \frac{21}{14} = \frac{3}{2}$$

d) Solving Quadratic Eqns using the "-b Formula":

Note: This method can be used for ALL quadratic equations. If $ax^2 + bx + c = 0$ is a quadratic equation, then the roots of the equation are given by:



See Tables pg 20

Example 3: Solve
$$x^2 - 2x - 5 = 0$$
.

In this case: a = 1, b = -2 and c = -5

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-5)}}{2(1)}$$

$$\Rightarrow x = \frac{2 \pm \sqrt{24}}{2}$$

$$\Rightarrow x = 3.45 \quad or \quad x = -1.45$$

e) Quadratic Eqns with fractions:

Example: Solve
$$\frac{2}{x+1} - \frac{3}{x-2} = \frac{5}{2}$$
.

Method 1: (Multiply across by common denominator)

In this case the common denominator would be 2(x+1)(x-2):

$$\frac{2(x+1)(x-2)\frac{2}{x+1} - 2(x+1)(x-2)\frac{3}{x}}{2(x-2)(2) - 2(x+1)(3) = 5(x+1)(x-2)}$$

$$2(x-2)(2) - 2(x+1)(3) = 5(x+1)(x-2)$$

$$4x - 8 - 6x - 6 = 5x^2 - 5x - 10$$

$$-5x^2 + 3x - 4 = 0$$

$$5x^2 - 3x + 4 = 0$$
.....and solve this as before.

Method 2: (Tidy up both sides into single fractions and cross multiply) (See Section 2 - Example 2)

$$\frac{2}{x+1} - \frac{3}{x-2} = \frac{5}{2}$$

$$\frac{2(x-2) - 3(x+1)}{(x+1)(x-2)} = \frac{5}{2}$$

$$\frac{-x-7}{(x+1)(x-2)} = \frac{5}{2}$$

$$2(-x-7) = 5(x+1)(x-2)$$

$$-2x - 14 = 5(x^2 - x - 2)$$

$$-2x - 14 = 5x^2 - 5x - 10$$

$$5x^2 - 3x + 4 = 0$$
 etc.

f) Forming Quadratic Equation from the roots:

Method 1:

Steps:

- 1. Let x = both of the roots.
- 2. Create two factors that are = 0.
- 3. Multiply the two factors together using "split and repeat".

Example: Find the quadratic equation with roots -1 and 3.

$$x = -1 or x = 3$$

$$x + 1 = 0 or x - 3 = 0$$

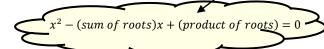
$$(x + 1)(x - 3) = 0$$

$$x(x - 3) + 1(x - 3) = 0$$

$$x^{2} - 3x + x - 3 = 0$$

$$x^{2} - 2x - 3 = 0$$
Need to know to use this method.

Method 2: Use the formula



Example: Find the quadratic equation with roots -1 and 3.

$$x^{2} - (sum \ of \ roots)x + (product \ of \ roots) = 0$$
$$x^{2} - (-1+3)x + ((-1)(3)) = 0$$
$$x^{2} - 2x - 3 = 0$$

8) Simultaneous Equations:

a) Two Linear Equations:

Steps:

- 1. Choose a variable to eliminate e.g. 'y'
- 2. Multiply one or both equations to make no. in front of y the same
- 3. Multiply the 2^{nd} equation by -1, if necessary, to make signs in front of 'y' different.
- 4. Add the two equations to eliminate 'y' and solve for 'x'.
- 5. Put x back into one of the equations to find y.

Example: Solve the equations below:

A:
$$2x - 3y = 7$$

B: $3x + 2y = 4$

$$Ax2: 4x - 6y = 14$$
 (mult by 2 to get 6 in front of y)
 $Bx3: 9x + 6y = 12$ (mult by 3 to get 6 in front of y)

13x = 26 (adding both equations together)
⇒
$$x = \frac{26}{13}$$
 (dividing both sides by 13)
⇒ $x = 2$

Putting x into A:

A:
$$2x - 3y = 7$$

 $\Rightarrow 2(2) - 3y = 7$
 $\Rightarrow 4 - 3y = 7$
 $\Rightarrow - 3y = 7 - 4$
 $\Rightarrow - 3y = 3$
 $\Rightarrow y = \frac{3}{-3}$ (dividing both sides by -3)
 $\Rightarrow y = -1$

b) One Linear, One Quadratic:

Steps:

- 1. Use the linear equation to get one variable on its own.
- 2. Sub this into the quadratic equation.
- 3. Multiply out and solve the resulting quadratic equation.
- 4. Sub your two values back into the expression from step 1.

Example: Solve the equations x - y = 2 and $2x^2 + y^2 = 36$.

L:
$$x - y = 2$$

C: $2x^2 + y^2 = 36$

Step 1: Use the linear equation to get one variable on its own:

Step 2: Substitute our expression for x into equation C:

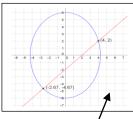
C:
$$2x^2 + y^2 = 36$$

=> $2(y + 2)^2 + y^2 = 36$

Step 3: Multiply out and solve the resulting quadratic equation:

=>
$$2(y^2 + 4y + 4) + y^2 = 36$$

=> $2y^2 + 8y + 8 + y^2 - 36 = 0$
=> $3y^2 + 8y - 28 = 0$
 $(3y + 14)(y - 2) = 0$
=> $3y + 14 = 0$ OR $y - 2 = 0$
 $3y = -14$ OR $y = 2$
 $y = \frac{-14}{2}$



Step 4: Sub your two values back into the expression from step 1:

$$x = y + 2$$
 **

When $y = 2$ When $y = \frac{-14}{3}$
 $x = 2 + 2$ $x = \frac{-14}{3} + 2$
 $x = 4$ $x = \frac{-8}{3}$

- So, our two solutions are: (4, 2) and $(\frac{-8}{3}, \frac{-14}{3})$

c) Simultaneous Equations with 3 Unknowns:

Steps:

- 1. Take equations in pairs and eliminate the same variable each time e.g. Solve A and B and eliminate z, and then Solve B and C and eliminate z
- 2. Solve two resulting equations for x and y values
- 3. Sub back into A, B or C to find z.

Example: Solve

Solving A and B to eliminate z:

Solving B and C to eliminate z:

B x 2:
$$4x + 6y + 2z = 32$$

C x -1: $-3x + 4y - 2z = -1$
x + 10y = 31.......Call this equation E

We now solve equations D and E to find x and y

Solving D and E to eliminate z:

Now substitute y back into D or E:

Finally, substitute x and y into A, B or C to find z:

A:
$$x + y + z = 9$$

(1) + (3) + $z = 9$
 $4 + z = 9$
 $z = 9 - 4$
 $\Rightarrow z = 5$

- So, the solution is (1, 3, 5).

9) Word Problems:

Tips:

- 1. Read the question a couple of times before attempting it.
- 2. Underline any Mathematical key words e.g. sum, product, total.
- 3. Let 'x' be what you are looking for, if there is one unknown. Use 'x' and 'y' for two unknowns.
- 4. Form an equation.
- 5. Solve the equation.
- 6. If you are unable to form an equation, try using "trial and improvement" to solve the problem. You need to show all trials and workings.
- 7. Check your answer(s).

Example 1: Find two consecutive natural numbers whose sum is 83.

- Keywords: consecutive, natural and sum
- Let $x = 1^{st}$ number, so that means $x + 1 = 2^{nd}$ number
- Their sum is 83 ('sum' means they add to 83)

=>
$$x + x + 1 = 83$$
 (equation formed)
=> $2x + 1 = 83$
=> $2x = 83 - 1$
=> $2x = 82$
=> $x = 41$ (dividing both sides by 2)
=> second number is $x + 1 = 42$

Check.....41 + 42 = 83

Example 2: A shop sells 50 sofas in a week. A leather sofa costs €1000 and a fabric sofa costs €750. The shop sells €42,500 worth of sofas. How many of each type are sold?

- Let x = no, of leather sofas and y = no, of fabric sofas
- Total number of sofas = 50

$$\Rightarrow$$
 x + y = 50 (first equation formed)

Total money = €42,500

$$\Rightarrow$$
 1000x + 750y = 42500 (second equation formed)

Can solve the 2 simultaneous equations now to find x and y. (See Section 5a)

10) Inequalities:

a) Solving Inequalities:

Notes:

- Need to know the types of numbers (See Arithmetic 1b)
- > Same rules as solving linear equations (See Algebra 4a)
- One difference: if you have to multiply/divide both sides of an inequality by a NEGATIVE number, we must CHANGE THE DIRECTION of the inequality.

Example 1: Graph the solution to 3 - 4x < 11, $x \in Z$.

$$3-4x<11\\-4x<11-3\\-4x<8\\\frac{-4x}{-4}<\frac{8}{-4}\qquad \text{(dividing both sides by -4)}\\x>-2\qquad \qquad \text{(Note sign change because divided by -4)}$$

For the number line, we're looking for all the Integers that are bigger than -2.

Example 2: Graph the solution to $3(x-2) \le -3$, $x \in R$.

$$3(x-2) \le -3$$

$$3x-6 \le -3$$

$$3x \le -3+6$$
 (adding 6 to both sides)
$$\frac{3x}{3} \le \frac{3}{3}$$
 (dividing both sides by 3)
$$x \le 1$$

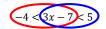
For the number line, we're looking for all the Real numbers that are smaller than or equal to $1. \,$

b) Double Inequalities:

Method 1: (Break inequality up into two inequalities)

Example: Graph the solution to -4 < 3x - 7 < 5, $x \in R$.

We break up the inequality into two inequalities as indicated by the red and blue below.



Inequality 1 (red)	Inequality 2 (blue)
-4 < 3x - 7	3x - 7 < 5
-4 < 3x - 7	3x < 5 + 7
3 < 3x	3x < 12
1 < <i>x</i>	x < 4

So, combining our two solutions, we want all the Real numbers that are bigger than 1 but less than 4. (not including the 1 and the 4)

Method 2:

Tip:

Do the same thing to all three parts of the inequality to leave an 'x' in the middle.

Example: Graph the solution to -4 < 3x - 7 < 5, $x \in R$.

-4+7 < 3x - 1 + 1 < 5+7, $x \in R$ (+ 7 to eliminate -7 in the middle)

$$3 < 3x < 12$$

$$\frac{3}{3} < \frac{3x}{3} < \frac{12}{3}$$

$$1 < x < 4$$
 (dividing all parts by 3)



c) Quadratic Inequalities:

Steps for solving $ax^2 + bx + c < 0$:

- 1. Solve the equation $ax^2 + bx + c = 0$ to find the roots
- 2. If 'a' is positive \Rightarrow \cup shape, if 'a' is negative \Rightarrow \cap shape.
- 3. Use the above to sketch the graph of the function $ax^2 + bx + c$
- 4. Use the graph to solve the inequality.

Example: Solve the inequality $2x^2 + 15x - 8 \le 0, x \in R$.

$$2x^{2} + 15x - 8 = 0 (Step 1)$$

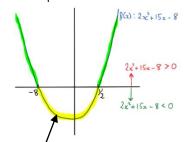
$$(2x - 1)(x + 8) = 0$$

$$2x - 1 = 0 or x + 8 = 0$$

$$2x = 1 or x = -8$$

$$x = \frac{1}{2}$$

> a = +2 => graph is ∪ shape



> The part of the graph/we are interested in is below the x-axis (highlighted in yellow above). It is described by x values between -8 and $\frac{1}{2}$. i.e. $-8 \le x \le \frac{1}{2}$

d) Rational Inequalities:

Example: Solve the inequality $\frac{2x+4}{x+1} < 3, x \in R$.

We multiply both sides by $(x + 1)^2$:

$$\frac{(x+1)^2}{(x+1)^2} \frac{2x+4}{x+1} < 3(x+1)^2$$

$$(x+1)(2x+4) < 3(x+1)^2$$

$$2x^2 + 6x + 4 < 3(x^2 + 2x + 1)$$

$$2x^2 + 6x + 4 < 3x^2 + 6x + 3$$

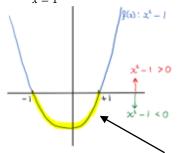
$$-x^2 + 1 < 0$$

$$x^2 - 1 < 0$$

We now solve the inequality above (See Section 6c):

$$x^{2}-1 < 0$$

 $(x+1)(x-1) = 0$
 $x+1=0$ or $x-1=0$
 $x=-1$ or $x=1$



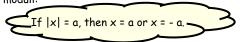
Again, the section we're interested in is below the x-axis (highlighted yellow) so our solution is -1 < x < 1.

11) Modulus:

a) Modulus:

Notes:

- The **modulus** of a number x is the positive value of the number, without regard to its sign.
- ➤ Symbol: |x|
- \rightarrow So |3| = 3 and |-3| is also = 3.
- Our definition of modulus gives us a useful rule when dealing with moduli:



When solving equations involving moduli a general rule of thumb is to square both sides similar to the way we solved surd equations.

Example: Solve the equation |2x - 5| = 7.

Method 1: Square both sides to eliminate the modulus symbol:

$$(|2x-5|)^2 = (7)^2$$

 $(2x-5)^2 = 49$
 $4x^2 - 20x - 24 = 0$
 $x^2 - 5x - 6 = 0$
 $(x-6)(x+1) = 0$
 $x = 6$ or $x = -1$

Method 2: Use the definition of modulus and our rule above:

If
$$|x| = a$$
, then $x = a$ or $x = -a$

 \rightarrow In this case |2x - 5| = 7, then

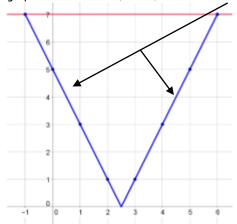
$$2x - 5 = 7$$
 OR $2x - 5 = -7$
 $2x = 12$ $2x = -2$
 $x = 6$ $x = -1$

Method 3: Graphical Method

- To use this method, we need to have a look at what the graph of the modulus function |2x 5| looks like.
- Let's try filling in some values for x and see what it looks like:

x values	function	y values	
-1	2(-1) - 5	7	
0	2(0) - 5	5	
1	2(1) - 5	3	
2	2(2) - 5	1	
3	2(3) - 5	1	
4	2(4) - 5	3	
5	2(5) - 5	5	
6	2(6) - 5	7	

 \triangleright The graph of the function |2x - 5| is shown in blue below.

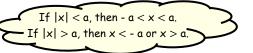


To find our solutions we can find where the graph of |2x - 5| = 7 using the graph i.e. x = -1 and x = 6

b) Modulus Inequalities:

Notes:

When dealing with modulus inequalities, we can use a graph of modulus functions to establish another set of useful rules:



Example: Solve the inequality $|x-4| \ge 3, x \in R$.

Method 1: We can square both sides:

$$(|x-4|)^{2} \ge (3)^{2}$$

$$(x-4)^{2} \ge 9$$

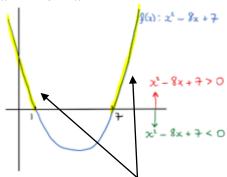
$$x^{2} - 8x + 16 \ge 9$$

$$x^{2} - 8x + 7 \ge 0$$

$$(x-7)(x-1) = 0$$

$$x-7 = 0 \quad or \quad x-1 = 0$$

$$x = 7 \quad or \quad x = 1$$



So, our solution from the yellow part of the graph is $x \le 1$ or $x \ge 7$.

Method 2: Using the rule above:

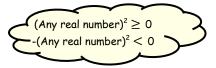
 $\qquad \text{If } |x| > a \text{, then } x < -a \text{ or } x > a.$

=> If
$$|x - 4| \ge 3$$
, then
 $x - 4 \le -3$ or $x - 4 \ge 3$
 $x \le 1$ or $x \ge 7$

12) Inequality Proofs/Discriminants:

a) Inequality Proofs:

For these proofs, the following is always true:



Example: Prove that $a^2 - 10a + 25 + 4b^2 \ge 0$ for all a, b $\in R$.

> Our aim here will be to tidy up the left-hand side into $(something)^2$, which we can say is always ≥ 0

$$a^2 - 10a + 25 + 4b^2$$

$$(a - 5)(a - 5) + (2b)^2$$

 $(a - 5)^2 + (2b)^2$ which is always positive for real numbers a and b $\Rightarrow a^2 - 10a + 25 + 4b^2 \ge 0$

b) Discriminants:

Notes:

When solving Quadratic Equations, we use the 'b' Formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The b² - 4ac part of this formula is known as the discriminant.

If
$$b^2$$
 - $4ac \ge 0 \Rightarrow 2$ distinct real roots.
If b^2 - $4ac = 0 \Rightarrow 2$ equal roots.
If b^2 - $4ac < 0 \Rightarrow$ no real roots.

Example: Find the value of p in the equation $x^2 + 10x + p = 0$ if it has two equal roots.

- There are two equal roots so b^2 4ac = 0.
- In this case, a = 1, b = 10 and c = p

=>
$$b^2 - 4ac = (10)^2 - 4(1)(p)$$

= $100 - 4p = 0$
=> $100 = 4p$
=> $p = 25$

13) Indices:

a) The Laws of Indices:

1)
$$a^p x a^q = a^{p+q}$$
 e.g. $4^4 x 4^3 = 4^7$

$$e a 4^4 \times 4^3 = 4^3$$

See Tables pg 21

2)
$$\frac{a^p}{a^q} = a^{p-q}$$

2)
$$\frac{a^p}{a^q} = a^{p-q}$$
 $e. g \frac{5^3}{5^2} = 5^{3-2} = 5^1$

$$\frac{5}{5^2} = 5^{3-2} = 5^1$$

3)
$$(a^p)^q = a^{pq}$$
 $e.g (5^2)^3 = 5^6$

$$e.g~(5^2)^3 = 5^6$$

4)
$$a^0 = 1$$

4)
$$a^0 = 1$$
 $e.g. 7^0 = 1 \text{ or } (0.5)^0 = 1$

5)
$$a^{-p} = \frac{1}{a^p}$$

5)
$$a^{-p} = \frac{1}{a^p}$$
 $e.g. 3^{-2} = \frac{1}{3^2} = \frac{1}{9}$

6)
$$(ah)^p - a^p h^p$$

6)
$$(ab)^p = a^p b^p$$
 $e.g. (3x)^2 = 3^2 x^2 = 9x^2$

7)
$$(\frac{a}{b})^p = \frac{a^p}{b^p}$$

7)
$$(\frac{a}{b})^p = \frac{a^p}{b^p}$$
 $e.g. (\frac{2}{3})^3 = \frac{2^3}{3^3} = \frac{8}{27}$

$$\frac{1}{2} - \sqrt{2}$$

8)
$$a^{\frac{1}{2}} = \sqrt{a}$$
 $e. g. 9^{\frac{1}{2}} = \sqrt{9} = 3$

$$a^{\frac{1}{3}} = \sqrt[3]{a}$$

$$a^{\frac{1}{3}} = \sqrt[3]{a}$$
 $e.g. 27^{\frac{1}{3}} = \sqrt[3]{27} = 3$

b) Solving equations with indices:

Steps:

- 1. Try and spot which powers you're dealing with, using the table below e.g. if you see a 9 and a 27 in the question, it would be powers of 3
- 2. Tidy up both sides of the equation into a single power using the laws of indices above. e.g. $5^x = 5^y$
- 3. If the bases are the same on both sides, you can now let the powers be equal to each other. i.e. x = y
- 4. Solve the simple equation to find your solution.

Example 1: Solve
$$3^{\times} = 27\sqrt{3}$$
.

$$3^x = 3^3 \cdot 3^{\frac{1}{2}}$$
using Law 8 above on the $\sqrt{3}$ $3^x = 3^{3+1/2}$using Law 1

$$3^x = 3^{7/2}$$
tidying up the power into a single

$$\Rightarrow x = \frac{7}{2}$$
as the bases are equal

c) Table of the most Powers:

×	x ¹	x ²	x ³	x ⁴	x ⁵	x ⁶	x ⁷	x ⁸
2	2	4	8	16	32	64	128	256
3	3	9	27	81	243			
4	4	16	64	256				
5	5	25	125	625				
6	6	36	216					
7	7	49	343					
8	8	64	512					
9	9	81	729					
10	10	100	1000					

Example 2: Solve the equation

$$2^{2x+1} - 5(2^x) + 2 = 0$$

Start by breaking up the power of the first term, using the Laws of Indices:

$$\Rightarrow 2^{2x}2^1 - 5(2^x) + 2 = 0$$

(Using Law 1)

$$\Rightarrow (2^x)^2 2^1 - 5(2^x) + 2 = 0$$

(Using Law 3)

$$\Rightarrow 2(2^x)^2 - 5(2^x) + 2 = 0$$

(Moving the 21 out in front)

Now let $v = 2^x$:

$$\Rightarrow 2(y)^2 - 5(y) + 2 = 0$$

$$\Rightarrow 2y^2 - 5y + 2 = 0$$

$$\Rightarrow$$
 $(2y-1)(y-2)=0$

$$\Rightarrow y = \frac{1}{2} \text{ or } y = 2$$

Now go back to our substitution to solve for the two x values:

If
$$y = \frac{1}{2}$$

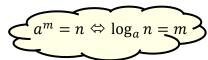
 $\Rightarrow 2^{x} = \frac{1}{2^{1}}$
 $\Rightarrow 2^{x} = 2^{-1}$
 $\Rightarrow x = -1$
If $y = 2$
 $\Rightarrow 2^{x} = 2^{1}$
 $\Rightarrow x = 1$

14) Logarithms:

a) Definition of Logs:

Notes:

- Logarithms are the opposite of raising a number to a particular power.
- > The definition of logs is:



Example: If $2^5 = 32$, then we can write that using logs by writing: $\log_2 32 = 5$.

b) The Laws of Logs:

1)
$$\log_a(xy) = \log_a x + \log_a y$$
 e.g. $\log_2(20) = \log_2 5 + \log_2 4$

2)
$$\log_a \left(\frac{x}{y} \right) = \log_a x - \log_a y$$
 $e.g \log_5 \left(\frac{2}{3} \right) = \log_5 2 - \log_5 3$

3)
$$\log_a(x^p) = p \log_a x$$
 $e.g \log_2 x^3 = 3 \log_2 x$

4)
$$\log_a 1 = 0$$
 $e.g. \log_4 1 = 0$

5)
$$\log_a\left(\frac{1}{x}\right) = -\log_a x$$
 $e.g. \log_2\left(\frac{1}{e}\right) = -\log_2 8$

6)
$$\log_a(a^x) = x$$
 e.g. $\log_4(4^x) = x$

7)
$$a^{\log_a x} = x$$
 $e. g. 2^{\log_2 x} = x$

8) $\log_b x = \frac{\log_a x}{\log_a b}$ $e. g. \log_8 x = \frac{\log_2 x}{\log_2 8}$

See Tables pg 21

c) Simplifying Expressions:

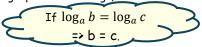
Example: Simplify $\log_3 2 + 2 \log_3 3 - \log_3 18$. $\log_3 2 + 2 \log_3 3 - \log_3 18$ $= \log_3 2 + 2(1) - [\log_3 9 + \log_3 2]$ (Laws 1, 6) $= \log_3 2 + 2 - \log_3 9 - \log_3 2$ $= 2 - \log_3 9$ (as $\log_3 2 - \log_3 2 = 0$) = 2 - 2 (as $\log_3 9 = 2$)

d) Solving Log Equations:

Notes:

e)

When solving equations with logs, use:



> Solutions of log equations always have to be checked.

Example: Solve the equation $\log_3(x+1) - \log_3(x-1) = 1$.

- Aim is to tidy up both sides into a single log, and use rule above.

- Use Law 2 to tidy up the LHS, and Law 6 to rewrite '1' on the RHS:

$$\log_{3}(x+1) - \log_{3}(x-1) = 1$$

$$\Rightarrow \log_{3} \frac{x+1}{x-1} = \log_{3} 3$$

$$\Rightarrow \frac{x+1}{x-1} = 3$$

$$\Rightarrow x+1 = 3x-3$$

$$\Rightarrow 2x = 4$$

$$\Rightarrow x = 2$$
Check:
$$\log_{3}(x+1) - \log_{3}(x-1) = 1$$

$$\Rightarrow \log_{3}(2+1) - \log_{3}(2-1) = 1$$

$$\Rightarrow \log_{3}(3) - \log_{3}(1) = 1$$

$$\Rightarrow 1 - 0 = 1$$

$$\Rightarrow 1 = 1$$

e) Equations involving Change of Base Law:

Notes

= 0

> Easier to change higher bases to lower bases Example: Solve the equation

$$\log_2(x+1) + \log_4(x) = \log_4(x^3+1).$$

Change all logs to base 2 first:

$$\Rightarrow \log_2(x+1) + \frac{\log_2(x)}{\log_2 4} = \frac{\log_2(x^3+1)}{\log_2 4}$$

$$\Rightarrow \log_2(x+1) + \frac{\log_2(x)}{2} = \frac{\log_2(x^3+1)}{2}$$

$$\Rightarrow 2 \log_2(x+1) + \log_2(x) = \log_2(x^3+1)$$

- RHS is a single log as it is, but we have a few more steps to do to the LHS to tidy it up into a single log: $-2 \log (x + 1)^2 + \log (x) = \log (x^3 + 1)$

$$\Rightarrow \log_2(x+1)^2 + \log_2(x) = \log_2(x^3+1)$$

$$\Rightarrow \log_2(x+1)^2(x) = \log_2(x^3+1)$$

- Can now eliminate the logs, as we have a single log on both sides, with the same power:

$$\Rightarrow (x)(x+1)^2 = x^3 + 1$$

$$\Rightarrow (x)(x^2 + 2x + 1) = x^3 + 1$$

$$\Rightarrow x^3 + 2x^2 + x = x^3 + 1$$

$$\Rightarrow 2x^2 + x - 1 = 0$$

$$\Rightarrow x = \frac{1}{2} \quad or \ x = -1$$

- Checking the answers eliminates $x=\frac{1}{2}$ as a solution, so the answer is x = -1

e) Problem Solving with Logs:

Example 1: Population, P, is modelled as $P=12300(e^{0.073t})$, where t is in years. After how many years, will the population reach 20,000 people? $P=12300(e^{0.073t})$

$$\Rightarrow 20000 = 12300(e^{0.073t})$$

$$\Rightarrow e^{0.073t} = \frac{20000}{12300} = 1.626$$
 (dividing both sides by 12300)

 $ightharpoonup \ln e^{0.073t} = \ln 1.626$ (taking natural log of both sides to eliminate

=>
$$0.073t = \ln 1.626$$
 (using Law 6 as $\ln e = 1$)
=> $t = \frac{\ln 1.626}{0.073} = \frac{0.486}{0.073} = 6.7 yrs$

Example 2: Amount of radioactive tracer remaining after t days is given by $A=A_o(e^{-0.058t})$. A_o = starting amount. How many days, will it take for one half of the original amount to decay?

- Key in this type of question is we want one half of the original amount

$$A = \frac{A_o}{2} \text{ or } A_o = 2A$$

$$A = A_o(e^{-0.058t})$$

$$A = 2A(e^{-0.058t}) \qquad \text{(filling in } A_o = 2A\text{)}$$

$$\Rightarrow 1 = 2(e^{-0.058t}) \qquad \text{(dividing both sides by A)}$$

$$\Rightarrow 0.5 = e^{-0.058t} \qquad \text{(dividing both sides by 2)}$$

$$\Rightarrow \ln 0.5 = \ln e^{-0.058t} \qquad \text{(taking In of both sides)}$$

$$\Rightarrow \ln 0.5 = -0.058t \qquad \text{(using Law 6 as } \ln e = 1\text{)}$$

$$\Rightarrow t = \frac{\ln 0.5}{-0.058} = 11.95 = 12 days \text{(dividing both sides by -0.058)}$$

a) Surds:

Notes:

- > A surd is a number in the form $\sqrt{}$ that can't be written as a rational number i.e. in the form $\frac{a}{b}$
 - E.g. $\sqrt{2}$ and $\sqrt{3}$ are both surds but $\sqrt{9}$ is not as it can be written as $\frac{3}{7}$
- \succ We can add/subtract similar surds together
 - E.g. i) $3\sqrt{2} + 5\sqrt{2} = 8\sqrt{2}$
 - ii) $4\sqrt{3} + 2\sqrt{2}$ we can't add these together as the $\sqrt{}$ parts are different

b) Reducing Surds:

• We can use the rule $\sqrt{ab}=\sqrt{a}\sqrt{b}$ to reduce larger surds into a simpler form:

Example: Simplify $\sqrt{50} + \sqrt{32}$

- We use $50 = 25 \times 2$ rather than 10×5 as 25 is a square number)
 - $\sqrt{50} + \sqrt{32}$
 - $= \sqrt{25}\sqrt{2} + \sqrt{16}\sqrt{2}$
 - $=5\sqrt{2}+4\sqrt{2}$
 - $=9\sqrt{2}$

c) Solving Surd Equations:

Notes:

- A general rule of thumb for solving equations with surds is to square both sides.
- When squared both sides, there is sometimes an incorrect answer introduced so we always have to check our answers when solving surd equations.

Example 1: Solve the equation $\sqrt{2x+3}=3$.

$$(\sqrt{2x+3})^2 = (3)^2$$
 (Square both sides)
2x + 3 = 9
=> x = 3

Check: $\sqrt{2x+3} = 3$ $\sqrt{2(3)+3} = 3$ $\sqrt{9} = 3$

Example 2: Solve the equation $\sqrt{x+7} + \sqrt{x+2} = 5$.

More than one surd => rearrange the equation so there is one surd on each side and then square both sides as before:

$$\sqrt{x+7} = 5 - \sqrt{x+2}$$

$$(\sqrt{x+7})^2 = (5 - \sqrt{x+2})^2$$

$$x+7 = 25 - 10\sqrt{x+2} + x + 2$$

$$x+7 = x+27 - 10\sqrt{x+2}$$

- \blacktriangleright Bring surd to one side and everything else to the other side: $10\sqrt{x+2}=20$
- > Square both sides again as before:

$$(10\sqrt{x+2})^2 = (20)^2$$
$$100(x+2) = 400$$

$$100(x+2) = 400$$
$$100x = 200$$

$$x = 2$$

Check:

$$\sqrt{x+7} + \sqrt{x+2} = 5$$

$$\sqrt{(2)+7} + \sqrt{(2)+2} = 5$$

$$\sqrt{9} + \sqrt{4} = 5$$

$$3+2=5$$

$$5=5$$

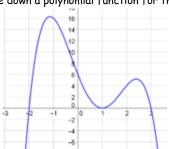
16) Polynomials/Factor Theorem/Solving Cubic Equations:

a) Polynomials:

Tips for identifying polynomials:

- 1. How many times does it touch or cross the x-axis? This gives
- 2. Is degree odd or even? Odd => one arm up and one points down
- 3. Is right arm up or down? If up => positive leading coefficient
- 4. Let x = all the roots. Write out factors, and multiply together.
- 5. Sketch polynomial.

Example: Write down a polynomial function for the following:



- Both arms pointing down so degree must be even i.e. 4, 6, 8.....
- Right arm pointing down so leading coefficient must be negative
- If we count the number of times the graph crosses or touches the x-axis we can see it crosses twice and touches once \Rightarrow degree
- = $4 \Rightarrow$ there must be 4 roots
- Crosses x-axis at x = -2 and 3 and touches at x = 1

$$\Rightarrow$$
 x = 1, x = 1, x = -2 and x = 3

=> Factors:
$$(x - 1)$$
, $(x - 1)$, $(x + 2)$ and $(x - 3)$

- So, we can now put together our factors to get a possible polynomial for this graph:

$$-(x-1)(x-1)(x+2)(x-3)$$
 or $-(x-1)^2(x+2)(x-3)$

b) Factor Theorem/Solving Cubic Equations:

Notes:

This rule holds in general for all polynomials and is known as the Factor Theorem

Example: Solve the equation $x^3 - 2x^2 - 5x + 6 = 0$.

- Find a root. (must be a factor of +6 i.e. $\pm 1, \pm 2, \pm 3, \pm 6$
- We work through them in order:

$$f(x) = x^3 - 2x^2 - 5x + 6$$

$$f(1) = (1)^3 - 2(1)^2 - 5(1) + 6 = 0$$

- If x = 1 fails, keep going and try -1, 2, -2, 3, -3, -6 and 6.
- From Factor Theorem, if f(1) = 0, then x 1 must be a factor.
- Find other factors using Long Division: (x 3) and (x + 2). - So, we can now factorise our original equation as:

$$x^3 - 2x^2 - 5x + 6 = 0$$

$$(x-1)(x-3)(x+2)=0$$

$$\Rightarrow x = 1 \quad x = 3 \quad x = -2$$

So, the graph of the function looks like?

