## Topic 11: Probability

## 1) The Basics of Counting:

a) Fundamental Principle Of Counting:

If one event has $m$ possible outcomes and a second event has $n$ possible outcomes, then there are $m \times n$ total possible outcomes for the two events together.
e.g. 2 starters and 5 main courses
$\Rightarrow 10$ possible dinner options
b) A Deck Of Cards:

- 52 Cards in a deck
- 4 suits: Spades (black), Clubs (black), Hearts (red) and Diamonds (red)
- Picture Cards: Jack, Queen and King in each suit (12 in total)


## c) Different Strategies:

1) We can simply list all possible outcomes.
2) We can make out a two-way table, if there are more than two trials.
e.g. tossing a coin two or more times
3) Sometimes it can be useful to make out a tree diagram, for showing all possible outcomes of two or more trials.
e.g. chance of picking one yellow and a blue bead from a bag of 6 yellow, 5 blue

## 2) Permutations/Arrangements:

- The number of ways of rearranging $n$ objects is given by the formula:


Example 1: Find the number of ways of rearranging the letters of the word MATHS i) with no restrictions ii) beginning with $A$
i) 5 letters $\Rightarrow 5$ objects to rearrange
$\Rightarrow 5!=120$
ii) beginning with an ' $A$ ' means we have to fix the $A$ in the first position and rearrange the remaining 4 letters $\Rightarrow 4!=24$

Example 2: Find the number of ways of rearranging the letters of the work MARINES i) with no restrictions ii) if the vowels
have to be together
i) 7 letters => 7 objects to rearrange => 7! $=5040$
ii) 3 vowels have to be together
=> put 3 vowels together and treat as 1 object
=> we now have 4 consonants and 1 block of vowels to rearrange $\Rightarrow 5$ objects $=5!=120$
$\Rightarrow$ the three vowels in the vowel block can be rearranged in 3! ways
$\Rightarrow$ The total no. of Arrangements $=5!\times 3!=720$

## 3) Basics of Probability:

a) Definition of Probability:

- The probability of an event occurring is:

e.g. bag with 5 red and 4 green beads
$P($ Green $)=\frac{4}{9}$
Note:
> Probability values must be between 0 and 1 (see scale below)

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 0 | $1 / 4$ | $1 / 2$ | $3 / 4$ | 1 |
| $0 \%$ | $25 \%$ | $50 \%$ | $75 \%$ | $100 \%$ |
| 0.00 | 0.25 | 0.5 | 0.75 | 1.00 |
| Impossible | Unlikely | Evens | Likely | Certain |

d) Expected Frequency:


Example 1: A die is tossed 600 times, how many times would you expect to roll a 1?
$P($ Throwing a 1$)=\frac{1}{6}$
$\Rightarrow$ Expected Freq of a '1' $=600 \times \frac{1}{6}=100$

## b) Terminology:

1. A trial is an act of doing an experiment in probability e.g. tossing a coin
2. An outcome is one of the possible results of the trial e.g. a 6 when throwing a die
3. A sample space is the set of all possible outcomes in a trial.
4. An event is the occurrence of one or more specific outcomes.
5. Probability is the measure of the chance of an event happening.
6. The expected frequency is: $=$ (the no. of trials) $\times$ (relative frequency or probability)
c) Relative Frequency and Carrying Out Experiments:
) We can carry out an experiment or trials to estimate the probability of an event occurring.
e.g. throwing a die to see how many 6 's we get
> If you throw a die 20 times and a 6 comes up 3 times we could estimate the probability of throwing a 6 to be $\frac{3}{20}$.
> This estimate we get from carrying out trials, is called the Relative Frequency.
> The more trials that are done, the closer the relative frequency gets to the actual probability.

## 4) Combinations:

## Notes

$>$ A selection of objects in any order i.e. the order is important.
E.g. to select a team of 5 from a panel of 8 players ( $A, B, C$, $D, E, F, G$, and $H$ ), the team $A B C D E$ would be the same team as BCADE

> The button on your calculator for calculating combinations is:


To calculate ${ }^{8} C_{5}$ press ' 8 ' and then 'Shift + the button shown' and then ' 5 ' and ' $=$ ' to get 56 .
> Two other properties of combinations are:

> There is also a quick way of calculating ${ }^{n} c_{r}$, which can often be done without using a calculator:

E.g. ${ }^{12} C_{5}=\frac{12 \times 11 \times 10 \times 9 \times 8}{1 \times 2 \times 3 \times 4 \times 5}=\frac{11 \times 9 \times 8}{1}=792$

Example 1: A $5^{\text {th }}$ year student has to choose 4 subjects out of a possible 7 for Leaving Cert \{French, Accounting, Biology, German, Physics, Chemistry and Applied Maths). How many different choices can they make if:
i) there are no restrictions
ii) French has to be included
iii) French can't be included
iv) Applied Maths and Chemistry are included but Biology cannot?
i) There are no restrictions => choosing 4 from 7: ${ }^{7} c_{4}=35$
ii) If French has to be included then they have to choose 3 other subjects from the 6 remaining: ${ }^{6} c_{3}=20$
iii) If French can't be included then they have to choose 4 from 6: ${ }^{6} c_{4}=15$ or else we could subtract the answer to (ii) from (i) i.e. 35 $-20=15$
iv) If Applied Maths and Chemistry have to be included but Biology cannot be, then the choice will be 2 subjects out of the remaining 4 i.e. ${ }^{4} c_{2}=6$

Example 2: A table tennis club in a school has 12 members: 7 boys and 5 girls. A team of 4 has to be selected to represent the school. How many different teams can be selected:
i) if there are no restrictions
ii) if there has to be more girls than boys on the team?
i) With no restrictions, the number of selections will be:

$$
{ }^{12} c_{4}=495 \text { teams }
$$

ii)

- Has to be more girls than boys on team:
=> ( 4 girls AND 0 boy) OR ( 3 girls AND 1 boy)
$\Rightarrow$ Total number of selections $=\left({ }^{5} c_{4} \times{ }^{7} c_{0}\right)+\left({ }^{5} c_{3} \times{ }^{7} c_{1}\right)$

$$
=(5 \times 1)+(10 \times 7)
$$

$$
=5+70=75 \text { teams }
$$

## 5) Set Theory and Probability:

## Notes:

$>$ Sets can be used to help solve probability problems.
$\Rightarrow$ Remember that $A \cap B$ represents $A$ AND $B$ whereas $A \cup B$ represents A OR B.

Example 1: 20 people were asked if they preferred Facebook or Twitter. 10 said Facebook, 7 said Twitter and 4 said neither. A person is selected at random from the group, what is the probability that the person selected:
i) chose Facebook and Twitter
ii) chose Facebook or Twitter
iii) chose Facebook only

- Firstly, we need to draw a Venn Diagram to represent the problem.
- 4 people chose neither => 16 people chose Facebook or Twitter
- As 10 chose Facebook and 7 chose Twitter, that means 1 person must have chosen both
- The Venn Diagram for this problem is shown on the right.

i) $P$ (Chose Facebook AND Twitter) $=F \cap T=\frac{1}{20}$
ii) P (Chose Facebook OR Twitter) $=F \cup T=\frac{16}{20}=\frac{4}{5}$
iii) $P($ Chose Facebook Only $)=\frac{9}{20}$


## 6) Combined Events/Bernoulli Trials:

## a) Combined Events:

Remember:


Example: The probability of Paul scoring a free throw is 0.8 .
What is the probability of:
i) scoring three free throws in a row
ii) scoring the first and missing the next two
iii) scoring two of the three free throws
i) $P\left(\right.$ Score $1^{\text {st }}$ AND Score $2^{\text {nd }}$ AND Score $\left.3^{\text {rd }}\right)=0.8 \times 0.8 \times 0.8=$ 0.512
ii) $P\left(\right.$ Score $1^{\text {st }}$ AND Miss $2^{\text {nd }}$ AND Miss $\left.3^{\text {rd }}\right)=0.8 \times 0.2 \times 0.2=$ 0.032
iii) $P$ (Score $1^{\text {st }}$ AND $2^{\text {nd }}$ AND Miss $3^{\text {rd }}$ ) OR (Miss $1^{\text {st }}$ AND Score $2^{\text {nd }}$ AND $\left.3^{\text {rd }}\right)$ OR (Score $1^{\text {st }}$ AND Miss $2^{\text {nd }}$ AND Score $3^{\text {rd }}$ )
$=(0.8 \times 0.8 \times 0.2)+(0.2 \times 0.8 \times 0.8)+(0.8 \times 0.2 \times 0.8)=0.128+$ $0.128+0.128=0.384$

## c) Binomial Distribution:

## Steps:

1. Write down the number of trials, $n$.
2. Calculate $p$ and $q$. $(q=1-p)$
3. Let $r=$ number of successes required.
4. Use the formula:
$P(r$ successes $)=\left({ }^{n} c_{r}\right) p^{r} . q^{n-r}$

Example 1: A die is tossed 10 times. What is the probability of exactly 4 sixes?

Step 1: No. of Trials: $n=10$
Step 2: $p=\frac{1}{6}$ and $q=1-\frac{1}{6}=\frac{5}{6}$
Step 3: $r=4$
Step 4: $P(4)={ }^{10} C_{4}\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right)^{6}=0.054$

## b) Bernoulli Trials:

## Notes:

> Experiment that satisfies the 4 conditions:

- There are a fixed number of repeated trials
- There are only two outcomes: success and failure
- The trials are independent.
- The probability of success in each trial is constant (Let $p=$ probability of success, and $q=$ probability of failure and $q=1-p$ )
> Examples of Bernoulli Trials would be:
- Tossing a coin or shooting free throws (Hit or Miss)

Example: The probability that a person hits a target with a dart is $30 \%$. If they throw 3 successive darts, what is the probability that the dart hits the target twice or more times?

P(Hits Twice) $=\left(\right.$ Miss $1^{\text {st }}$ AND Hits $2^{\text {nd }}$ AND $3^{\text {rd }}$ ) OR (Hit $1^{\text {st }}$ AND $2^{\text {nd }}$ AND Miss $3^{\text {rd }}$ ) OR (Hit $1^{\text {st }}$ AND Miss $2^{\text {nd }}$ AND Hit $3^{\text {rd }}$ ) $=(0.7 \times 0.3 \times 0.3)+(0.3 \times 0.3 \times 0.7)+(0.3 \times 0.7 \times 0.3)=0.189$
$P($ Hits Thrice $)=$ Hits $1^{\text {st }}$ AND Hits $2^{\text {nd }}$ AND Hits $3^{\text {rd }}$

$$
=0.3 \times 0.3 \times 0.3=0.027
$$

P (Hits Twice OR Thrice) $=$ Hits Twice OR Hits Thrice
$=0.189+0.027$
$=0.216$
Example 2: A basketball player made 80\% free throws in the season. Find the probability that tonight he i) misses for the $1^{\text {st }}$ time on his $5^{\text {th }}$ free throw ii) makes his $1^{\text {st }}$ basket on the $4^{\text {th }}$ free throw iii) makes $1^{\text {st }}$ basket on one of his first 3 free throws i) Note for this part that we don't need the ${ }^{n} c_{r}$ term

```
Step 1: No. of Trials: }n=
Step 2: p=0.8 and q=1-0.8=0.2
Step 3: r=4
Step 4: P(4)=(0.8)4}(0.1) '= 0.08192
```

ii) Again, we don't need the ${ }^{n} c_{r}$ term Step 1: No. of Trials: $n=4$ Step 2: $p=0.2$ and $q=1-0.2=0.8 \quad$ (in this case success is a miss $=>=0.2$ )
Step 3: $r=3$
Step 4: $P(3)=(0.2)^{3}(0.8)^{1}=0.0064$
iii) In this part, he could make the free throw on the $1^{\text {st }}$ throw, or the $2^{\text {nd }}$ throw, o the $3^{\text {rd }}$ throw, so we need the ${ }^{n} c_{r}$ term this time: Step 1: No. of Trials: $n=3$
Step 2: $p=0.8$ and $q=1-0.8=0.2$
Step 3: $r=1$
Step 4: $P(1)={ }^{3} c_{1}(0.8)^{1}(0.2)^{2}=0.09$

## a) Mutually Exclusive Events:

## Notes:

> Normally add two probabilities in an OR situation.
> If the events do overlap, we adjust the rule:

> Events with no overlap are mutually exclusive so $2^{\text {nd }}$ rule above applies in those situations.
> Mutually exclusive events cannot happen at the same time.

Example: Two standard dice are rolled and summed together. What is the probability of rolling:
i) a 2 or an 8
ii) a 2 or an odd number
iii) a 3 or a prime number

|  | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 6 | 7 | 8 | 9 | 10 | 11 | 12 |

Solution:
i) As you couldn't throw a 2 and an 8 at the same time, the two events here are mutually exclusive so our answer will be:

$$
P(A)+P(B)=\frac{1}{36}+\frac{5}{36}=\frac{6}{36}=\frac{1}{6}
$$

ii) Again, as 2 is an even number, these two events are mutually exclusive, so our answer will be:

$$
P(A)+P(B)=\frac{1}{36}+\frac{18}{36}=\frac{19}{36}
$$

iii) The two events in this case are not mutually exclusive, as 3 is also a prime number, so it would be double counted if we simply added the two probabilities together, so our answer will be:

$$
P(A)+P(B)-P(A \text { AND } B)=\frac{2}{36}+\frac{15}{36}-\frac{2}{36}=\frac{15}{36}=\frac{5}{12}
$$

## c) Independent Events:

## Notes:

> Two events are independent if one event does not affect the outcome of the other.
E.g. drawing 2 cards from a deck, find probability of getting 2 clubs, i) with replacement and ii) without replacement.
> If there is replacement, then the two events would be independent of each other.
$>$ If there is no replacement, then the $2^{\text {nd }}$ card is drawn from 51 cards, so the $1^{\text {st }}$ outcomes has an effect on the $2^{\text {nd }}$ outcome => not independent.
> If two events are independent:


## b) Conditional Probability:

## Notes:

> When there are conditions on a probability (probability of $A$ given B has occurred):

> Watch for the word 'given'.
Example 1: In a college, 25\% of students failed Maths, $15 \%$ failed Chemistry and $10 \%$ failed both Maths and Chemistry. Student selected at random.
i) Find $P(M)$, the probability that the student failed Maths ii) Find $P(C \mid M)$, the probability that the student failed Chemistry, given that they failed Maths
i) $25 \%$ failed Maths $=>P($ Failed Maths $)=0.25$.
ii) $10 \%$ failed both subjects $\Rightarrow P(M \cap C)=10 \%=0.1$

$$
\Rightarrow P(C \mid M)=\frac{P(C \cap M)}{P(M)}=\frac{0.1}{0.25}=\frac{2}{5}
$$

Example 2: 3 cards chosen at random. Probability that all 3 cards are clubs given that 2 of them are known to be picture cards?

- Let $A=$ exactly two of the cards are picture cards
$\Rightarrow$ choose 2 picture cards from the 12 picture cards and 1 other card from the 40 non-picture cards $\Rightarrow{ }^{12} c_{2} \times{ }^{40} c_{1}=66 \times 40=$ 2640
- Let $B=$ All Clubs
- So $A \cap B$ is that exactly two are picture cards and all are clubs $\Rightarrow$ choose 2 from the 3 clubs picture cards and 1 from the 10 other clubs $={ }^{3} c_{2} \times{ }^{10} c_{1}=3 \times 10=30$
- We can now use the rule above:

$$
P(B \mid A)=\frac{\#(B \cap A)}{\#(A)}=\frac{30}{2640}=\frac{1}{88}
$$

Example: Blue and a white die are thrown. $E$ is the event that the number on the blue die is 3 greater than the white die and $F$ is the event that the total of the numbers on the two dice is 7 .
i) Find $\mathrm{P}(\mathrm{E}), \mathrm{P}(\mathrm{F})$ and $P(E \cap F)$. ii) Investigate if E and F are independent.
i) Sample space would be $\{(1,1),(1,2),(1,3) \ldots . . . . . .(6,6)\}$, which has 36 outcomes.

- $E$ is event that the number on blue die is 3 greater than the white

$$
\begin{aligned}
& \Rightarrow \text { successful outcomes are: }\{(4,1),(5,2),(6,3)\} . \\
& \Rightarrow P(E)=\frac{3}{36}=\frac{1}{12}
\end{aligned}
$$

- $F$ is event that the total of the 2 numbers on the dice sum to 7 $\Rightarrow$ successful outcomes are $\{(1,6),(2,5),(3,4),(4,3),(5,2),(6$,
1)\}

$$
\Rightarrow P(F)=\frac{6}{36}=\frac{1}{6}
$$

- $E \cap F$ is the event that the number on the blue die is 3 greater than the white and that the total of the two numbers is 7
$\Rightarrow>$ the successful outcomes are $\{(5,2)\} \quad \Rightarrow P(E \cap F)=\frac{1}{36}$
- Can use any of the three rules above to check for independence, but in this case rule 3 works best: i.e. $P(A \cap B)=$ $P(A) \times P(B)$
We can see that $\frac{1}{36} \neq \frac{1}{12} \times \frac{1}{6} \Rightarrow E$ and $F$ are not independent


## 8) Normal Distributions/Z-Scores:

## a) Area Under Normal Distribution:

Notes:
$>100 \%$ of the data is under the Normal Curve
$\Rightarrow$ the area under the Normal curve $=1$


## b) Z-Scores:

## Notes:

> To calculate the z-score for a particular data value we use the formula:

where $\mu$ is the mean and $\sigma$ is the standard deviation

## c) Finding Probabilities from the Tables:

## Notes:

$\Rightarrow$ Area to the LEFT of a particular z-score given on pg 36/37 of the Tables $\Rightarrow$ can find probability of event occurring for ANY zscore.


Examples: Assuming that $z$ is normally distributed with mean 0 and standard deviation 1 , find: i) $P(z<1.46)$
ii) $P(z \geq 2.43)$
iii) $P(z \geq-0.32)$
iv) $P(z<-0.732)$
v) $P(-1.1<z<1.64)$
i) Want the area to the left of a positive $z$-score, so can read that straight from the tables: $0.9279=92.79 \%$
ii) Want the area to the right of a positive $z$-score, so subtract the area to the left of that score from 1:

$$
=>=1-P(z<2.43)=1-.9925=0.0075=0.75 \%
$$

iii) As curve is symmetrical the area above -0.32 would be the same as the area below +0.32 , so: $P(z \leq 0.32)=0.6255=62.55 \%$
iv) As curve is symmetrical, the area to the left of $z=-0.732$, would be the same as the area above $z=0.732$

$$
\Rightarrow>=1-P(z<0.732)=1-0.7673=0.2327
$$

v) For this part, we will need to work out:

$$
\begin{aligned}
& P(z<1.64)-P(z<-1.1) \\
& =P(z<1.64)-P(z \geq-1.1) \\
& =P(z<1.64)-[1-P(z \leq 1.1)] \\
& =P(z<1.64)-1+P(z \leq 1.1) \\
& =0.9495-1+0.8643=0.8138=81.38 \%
\end{aligned}
$$

## d) Problem Solving:

## Steps:

1. Convert the values to z-scores, using the formula.
2. Draw a rough sketch of the curve, and shade the required region.
3. Look up the tables to find the probability.

Example: The heights of men in Ireland are normally distributed with a mean of 168 cm and a standard deviation of 6 cm . Find the probability that an Irishman selected at random will be greater than 180 cm in height.
Step 1: Convert the values to z-scores, using the formula.

$$
\begin{aligned}
Z & =\frac{x-\mu}{\sigma} \\
\Rightarrow Z & =\frac{180-168}{6}=2
\end{aligned}
$$

Step 2: Draw a rough sketch of the curve and shade the required region.


Step 3: Look up the tables to find the probability.

- The area of the shaded region will be:

$$
\begin{aligned}
& =1-P(z<2) \\
& =1-0.9772 \\
& =0.0228=2.28 \%
\end{aligned}
$$

## 9) Expected Value:

## Notes:

$>$ A way of determining if a bet is fair, good or bad.

$E(X)=$ All Outcomes $X$ Probability of Each Outcome
$>$ If $E(X)=0 \Rightarrow$ Bet is Fair
$>$ If $E(X)>0 \Rightarrow$ Bet is Good
$\Rightarrow$ If $E(X)<0 \Rightarrow$ Bet is Bad

Example 1: Game costs €3 to play. If a person rolls a 2, they win €12. If they roll a 1,3 or 5, they get their money back. If they throw a 4 or 6 , they lose their money. Good bet or not?
Probability of rolling any number is $\frac{1}{6}$
$\Rightarrow$ If a 2 is thrown: $\frac{1}{6} \times 12=€ 2$
If a 1,3 or 5 is thrown: $\frac{3}{6} \times 3=€ 1.50$
If a 4 or 6 is thrown: $=\frac{2}{6} \times 0=€ 0$
Cost of Game $=€ 3 \Rightarrow E(X)=€ 3.50-€ 3=€ 0.50$
On average, player could expect to win 50 cents => a good bet.

Example 2: A friend of yours offers you a bet: you have to bet €2. Then you pick a card from a pack. If you choose the Ace of Spades, you win $€ 50$ and if you pick a Hearts card, you win $€ 5$. Is this a good bet? Justify your answer with reference to the expected value.

- Let $X$ represent the winnings in euro in this example, so the probability distribution will be:

| $x$ | $P(x)$ | $x \cdot P(x)$ |
| :---: | :---: | :---: |
| $€ 5$ | $\frac{1}{4}$ | $\frac{5}{4}$ |
| $€ 50$ | $\frac{1}{52}$ | $\frac{25}{26}$ |

- So, the expected value for the winnings would be: = $\sum x . P(x)=\frac{5}{4}+\frac{25}{26}=\frac{115}{52}=€ 2.20$
It costs $€ 2.00$ to play each game, so this is a good bet, as you stand to win $€ 0.20$ on average. ( $€ 2.20$ - €2.00)

