Q1. Solve the equation below: $\frac{1}{x+1} + \frac{1}{x} = \frac{5}{6}$	Q2. Solve the equations below: 3p + 4q - 2r = 8 9p + 8q + 2r = -13 6p - 12q + 14r = -59
<u>Q3.</u> Solve the equations $x - 4y = -13$ and $x^2 + 2y^2 + 6xy = 29$.	<u>Q4.</u> Two whole numbers differ by 2 and their product is 143. Find the numbers.
<u>Q5.</u> Rearrange the formula below to make 'a' the subject of the formula: $h = \sqrt{a^2 + b^2}$	<u>Q6.</u> If $(x + a)^2$ is a factor of $x^3 + 6px + k$, show that: (i) $k + 2a^3 = 0$ (ii) $k^2 + 32p^3 = 0$ and (iii) $a^2 + 2p = 0$.
<u>Q7.</u> Solve $x^3 + 5x^2 - 4x - 20 = 0$.	<u>Q8.</u> Form the quadratic equation with roots $\frac{5}{2}$, -3
Q9. The graph of the polynomial $y = f(x)$ of degree 7 is shown below. The polynomial $y = f(x)$ of degree 7 is shown below. The polynomial $f(x)$. Q15. Solve the equation: $x^3 - 19x - 30 = 0$.	<u>Q10.</u> Sketch a rough graph of the polynomial $f(x) = (x + 2)^3 x^2 (x - 2)^2$.
	Q11. If $x^2 + ax + 4$ is a factor of $x^3 + px^2 + qx + 4b$, show that $p = a + b$ and $q = 4 + ab$. Q12. Find the real numbers a and b such that $x^2 + 4x - 6 = (x + a)^2 + b$.
	Q13. If $f(x) = 3x^3 + mx^2 - 17x + n$ and $x - 3$ and $x + 2$ are factors of $f(x)$, find the values of m and n.
	<u>Q14.</u> Two cars leave a town at the same time but travelling in opposite directions. Car A travels at a speed of 50 km/h and car B travels at a speed of 70 km/h. How long will it take for the cars to be 200km apart?

<u>Answers:</u>

Q1.	$x = -\frac{3}{5} \text{ or } x = 2$	Q2. $p = \frac{1}{3}, q = -\frac{3}{4}, r = -5$
Q3.	$\left(\frac{1}{3}, \frac{10}{3}\right), (-9, 1)$	Q4. 11, 13 or -11, -13
Q5.	$a = \pm \sqrt{h^2 - b^2}$	Q7. 2, -2 and -5
Q8.	$2x^2 + x - 15 = 0$	Q9. $f(x) = -(x + 2)^3 x(x - 1)^2(x - 3)$
Q12.	a = 2, b = -10	Q13. m = -4, n = 6
Q14.	1hr 40 mins	Q15. x = -2, -3, 5