Q1. Solve the equation below:

$$
\frac{1}{x+1}+\frac{1}{x}=\frac{5}{6}
$$

Q3. Solve the equations $x-4 y=-13$ and $x^{2}+2 y^{2}+6 x y=29$.

Q5. Rearrange the formula below to make ' a ' the subject of the formula:

$$
h=\sqrt{a^{2}+b^{2}}
$$

Q7. Solve $x^{3}+5 x^{2}-4 x-20=0$.

Q9. The graph of the polynomial $y=f(x)$ of degree 7 is shown below.

Find an expression for the polynomial $f(x)$.

Q15. Solve the equation:

$$
x^{3}-19 x-30=0 .
$$

Q2. Solve the equations below:

$$
\begin{gathered}
3 p+4 q-2 r=8 \\
9 p+8 q+2 r=-13 \\
6 p-12 q+14 r=-59
\end{gathered}
$$

Q4. Two whole numbers differ by 2 and their product is 143 . Find the numbers.

Q6. If $(x+a)^{2}$ is a factor of $x^{3}+6 p x+k$, show that:
(i) $k+2 a^{3}=0$
(ii) $k^{2}+32 p^{3}=0$ and
(iii) $a^{2}+2 p=0$.

Q8. Form the quadratic equation with roots $\frac{5}{2},-3$
Q10. Sketch a rough graph of the polynomial

$$
f(x)=(x+2)^{3} x^{2}(x-2)^{2}
$$

Q11. If $x^{2}+a x+4$ is a factor of $x^{3}+p x^{2}+q x+4 b$, show that $p=a+b$ and $q=4+a b$.

Q12. Find the real numbers a and b such that

$$
x^{2}+4 x-6=(x+a)^{2}+b .
$$

Q13. If $\mathrm{f}(x)=3 x^{3}+m x^{2}-17 x+n$ and $x-3$ and $x+$ 2 are factors of $f(x)$, find the values of m and n.

Q14. Two cars leave a town at the same time but travelling in opposite directions. Car A travels at a speed of $50 \mathrm{~km} / \mathrm{h}$ and car B travels at a speed of 70 km / h. How long will it take for the cars to be 200km apart?

Answers:

| Q1. $\quad x=-\frac{3}{5}$ or $x=2$ | Q2. $\quad p=\frac{1}{3}, q=-\frac{3}{4}, r=-5$ |
| :--- | :--- | :--- |
| Q3. $\quad\left(\frac{1}{3}, \frac{10}{3}\right),(-9,1)$ | Q4. 11,13 or $-11,-13$ |
| Q5. $\quad a= \pm \sqrt{h^{2}-b^{2}}$ | Q7. $2,-2$ and -5 |
| Q8. $\quad 2 x^{2}+x-15=0$ | Q9. $f(x)=-(x+2)^{3} x(x-1)^{2}(x-3)$ |
| Q12. $\quad a=2, b=-10$ | Q13. $\quad m=-4, n=6$ |
| Q14. 1 hr 40 mins | Q15. $\quad x=-2,-3,5$ |

