Topic 8: Geometry

1) The Basics:

Theorem List:

1. Vertically opposite angles are equal in measure.
2. In an isosceles triangle the angles opposite the equal sides are equal. Conversely, if two angles are equal, then the triangle is isosceles.
3. If a transversal makes equal alternate angles on two lines then the lines are parallel, (and converse).
4. The angles in any triangle add to 180°.
5. If three parallel lines cut off equal segments on some transversal line, then they will cut off equal segments on any other transversal.

6. Two lines are parallel if and only if, for any transversal, the corresponding angles are equal
7. Each exterior angle of a triangle is equal to the sum of the interior opposite angles.
7 In a parallelogram, opposite sides are equal and opposite angles are equal (and converses)
8. The diagonals of a parallelogram bisect each other.
9. [Theorem of Pythagoras] In a right-angled triangle the square of the hypotenuse is the sum of the squares of the other two sides.
10. For a triangle, base \times height doesn't depend on the choice of base.
11. A diagonal of a parallelogram bisects the area
12. The area of a parallelogram is base \times height.

3) Corollaries: (The results below follow on from the theorems above)

Each angle in a semi-circle is a right angle.

4) Constructions:

General Tips:

1. Keep your work neat and tidy.
2. Choose an appropriate pencil to draw the construction, not too dark and not too light.
3. Draw rough sketches of construction first, especially for triangles and rectangles.
4. Show all your construction lines \& label your construction.

- There are 15 constructions on the course for Junior Cert Higher Level. (See Power Points in OneNote for step by step instructions)

Constructions List:

1. Bisector of a given angle, using only compass and straight edge.
2. Perpendicular bisector of a segment, using only compass and straight edge.
3. Line perpendicular to a given line I, passing through a given point on l.
4. Line parallel to a given line, through a given point.
5. Division of a line segment into 2 or 3 equal segments without measuring it.
6. Line segment of a given length on a given ray.
7. Angle of a given number of degrees with a given ray as one arm.
10-12. Triangle, given i) SSS ii) SAS or iii) ASA data
8. Right-angled triangle, given the length of the hypotenuse and one other side.
9. Right-angled triangle, given one side and one of the acute angles (several cases).
10. Rectangle, given side lengths.
a) Transformations:

Axial Symmetry in the X-axis: $\left(S_{x}\right)$

- Shapes are mirrored/reflected in the X-axis. See example below.

Axial Symmetry in the Y -axis: $\left(\mathrm{S}_{\mathrm{y}}\right)$

- Shapes are mirrored / reflected in the Y-axis. See example below.

Central Symmetry in the Origin: $\left(S_{0}\right)$

- Shapes end up flipped and rotated as shown below.
- Central symmetry in a point other than the origin would have the same effect on the shape i.e. flipped and rotated

Translation:

- Note that shapes don't change when translated as the shape just 'slides' to another position

Rotations:

- The shape in blue below is a rotation of the red shape 90° clockwise. The green is a rotation of 180°. Note that it looks similar to the central symmetry in a point image from above. The orange is a rotation of 270° clockwise.

b) Axes of Symmetries of Shapes:

Square:

A square has 4 axes of symmetry, as shown below.

Triangle:

An isosceles triangle has 1 axis of symmetry, as shown below. If the triangle was an equilateral triangle it would have two more axes of symmetry from the other two vertices of the triangle.

Rectangle:

A rectangle has 2 axes of symmetry, as shown below.

Circle:
A circle has an infinite number of axes of symmetry, as shown below.

