Q1. Counting and Probability - The Basics (1 $1^{\text {st }}$ Year - Before Week 20)
a) State the Fundamental Principle of Counting.
b) An early bird menu consists of 3 starters and 5 main courses. How many different 2-course meals can you have?
c) A code for a locker consists of one of the letters A, B, C or D followed by a digit from 1 to 9 . How many different codes are possible?
d) A pupil must choose one subject from block A, one subject from block B and one subject from block C for Leaving Cert. Group A has 4 modern languages, Group B has 3 Science subjects while Group C has 2 Business subjects. How many different subject selections are possible?
e) A card is drawn at random from a deck of cards. Calculate the probability that the card is:
i) an Ace
ii) a Diamond
iii) a red picture card
iv) has a value bigger than 7 (ignoring picture cards)
f) The letters of the word MATHEMATICS are printed on separate cards. If a card is chosen at random, what is the probability that the card is an M ?
g) In a pre-election poll of 400 people, 120 supported Fine Gael, 140 supported Fianna Fail and the rest were undecided. If a person is selected at random from this group what is the probability that they:
i) support Fine Gael?
ii) are undecided?
h) A die is thrown and a coin is tossed.
i) Show all possible outcomes in a two-way table.
ii) What is the probability of getting a Head and an even number on the die?
i) A fair die is thrown 60 times. How many times would you expect to get a 4?
j) 50 cars pass through a junction in a few minutes. 15 of the cars are red.
i) Use these results to estimate the probability that the next car to pass the junction will be red.
ii) What do we call this estimate of the probability?

Q2. Probability - $2^{\text {nd }}$ Year Probability - Unit 5
a) The given Venn Diagram shows the modern languages, if any, taken by a group of 50 students.
i) Find the value of x.
ii) If a student is selected at random, find
 the probability that the student takes at least one of these languages.
b) In a class of 28 students, 25 were wearing blazers or ties or both.

Seven wore blazers with no tie and eight wore blazers and ties.
i) Show this information on a Venn Diagram.
ii) Find the probability that a student selected at random was wearing a tie but not a blazer.
c) 35 people coming back from America were asked if they had visited New York, Boston or San Francisco. The results were as follows: 20 had visited New York, 13 had visited Boston, 16 had visited San Francisco. 7 had been to all three cities. 3 had been to both New York and San Francisco, but not Boston. 1 had been to both New York and Boston, but not San Francisco. 8 had been to Boston and San Francisco.
i) Display the information in a Venn Diagram.
ii) If one person is chosen at random from the group, what is the probability that the person had not visited any of the three cities?
iii) A person who visited New York is chosen at random. What is the probability that the person also visited Boston?
d) Kaitlin has a 40% success rate from the free-throw line.
i) Draw a Tree Diagram to show Kaitlin's possible success from three successive free throws.
ii) Use your diagram to calculate the probability that she scores three free throws in a row.
iii) What is the probability that she scores at least 2 of the free throws?
iv) What is the probability that she scores exactly 1 of her 3 free throws?
e) Olive throws a die three times in a row. Calculate the probability that she throws a four, three times in a row.
f) There are 5 green beads and x golden beads in a bag. What is the value of x if the probability of drawing a golden bead is $\frac{2}{3}$?
g) A biased die is rolled. The table gives the probability that it will land on each of the numbers $1,2,4,5$ and 6 .

	1	2	3	4	5	6
Probability	0.1	0.1		0.2	0.3	0.1

i) Work out the probability that the die will land on a 3.
ii) Calculate the probability that the die will land on an even number.

Q3. Extra Challenge and Problem Solving

a) These are the results of an experiment to test a spinner:

	Result of Spins
Red	50
White	30
Blue	20
Total	100

i) Explain what the spinner could look like.
ii) Draw a possible sketch of the spinner.
b) Paul is raising money for a charity in his school. He organises a fun day where one of the games is played using a spinner with five sectors numbered 1 to 6 and a second spinner with numbers 1 to 3 . He charges $€ 1$ for each game, where both spinners must be spun. If a person gets the same number on both spinners they get their $€ 1$ back. If they get a sum of 8 on the two spinners, they get $€ 5$ back.
i) Draw a two way table to show the sum of the numbers on the two spinners.
ii) Find the probability of getting $€ 5$ back if you play the game once.
iii) If every student in the 420 student school plays the game, find the number of students you would expect to get $€ 1$ back.
iv) After 420 students have played the game, 80 students have got exactly $€ 1$ back and Paul has raised $€ 120$ for his charity. Find the number of students who got $€ 5$ back.
v) Paul says that the probability of someone getting money back ($€ 1$ or $€ 5$) would decrease if he changed the spinner with 6 numbers to a spinner with 5 numbers instead, and kept the rules the same otherwise. Is Paul correct? Make out a two-way table using the changed Spinner, and use it to justify your answer fully.

Revision Sheet 7 Solutions:

Q1.

a) If there are m ways of doing one thing and n ways of doing another thing, then the total number of outcomes is given by $m \times n$.
b) 15
c) 36
d) 24 selections
e) i) $\frac{1}{13}$
ii) $\frac{1}{4}$
iii) $\frac{3}{26}$
iv) $\frac{3}{13}$
f) $\frac{2}{11}$
g) i) $\frac{3}{10}$
ii) $\frac{7}{20}$
h) i)

$(H, 1)$	$(H, 2)$	$(H, 3)$	$(H, 4)$	$(H, 5)$	$(H, 6)$
$(T, 1)$	$(T, 2)$	$(T, 3)$	$(T, 4)$	$(T, 5)$	$(T, 6)$

ii) $\frac{1}{4}$
i) 10 times
j) i) $\frac{3}{10}$
ii) The relative frequency

Q2.
a) i) $x=12$
ii) $\frac{21}{25}$
b) i)

c) i)

ii) $\frac{1}{7}$
iii) $\frac{2}{5}$
d) i)

$$
\begin{aligned}
& S=\text { Score } \\
& M=\text { Miss }
\end{aligned}
$$

ii) 0.064 or $\frac{8}{125}$
iii) 0.352 or $\frac{44}{125}$
iv) 0.432 or $\frac{54}{125}$
e) i) $\frac{1}{216}$
ii) 10 golden beads
f) i) 0.2
ii) 0.4

Q3.
a) i) 50% of the spinner would be red, 30% would be white and 20% of it would be Blue
ii)

b) i)

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9

ii) $\frac{1}{9}$
iii) 70 students
iv) 44 students
v)

	1	2	3	4	5
1	2	3	4	5	6
2	3	4	5	6	7
3	4	5	6	7	8

\Rightarrow Probability of someone getting money back was $\frac{5}{18}$ with the 6 numbered spinner but now it's $\frac{4}{18}$ so the probability has reduced, so Paul is correct.

