Topic 14: Coordinate Geometry of the Line

1) The Basics:

a) Cartesian Plane/Coordinates:

Notes:
> Coordinates must be listed in brackets with a comma in between the two numbers
$>$ We always list the X value first and the Y value second...see examples in diagram above.
> The point $(0,0)$, shown in purple, is also called the Origin.
$\rightarrow \quad$ The X and Y axes divides the plane up into 4 quadrants

- Quadrant 1 is top right of the plane and they are numbered in an anti-clockwise direction

b) Distance/Midpoint Formula:

e) Intersecting Lines:

We can find where two lines meet by solving the equations simultaneously. See Algebra - Section 5a
c) Slope:

Notes:
$>$ Slope is a measure of the steepness of a line.
> Slopes can be negative or positive:

$>\quad$ There are three different ways we can find it:

d) Equation of a line:

Notes:

$>$ A unique licence plate that identifies a particular line.
> To use the formula, we have to know:

- A point on the line
- The slope of the line (See section above)
\rightarrow Once we know the two things above we use the formula:

$>$ The equation of a line can also be given in the form:

$w^{w h e r e}$ ' m ' = the slope and ' c ' = the y-intercept (where the line crosses the y-axis)

Example: A line with equation $y=3 x-5$ has a slope of 3 and crosses the y-axis at the point $(0,-5)$.

2) Parallel/Perpendicular Lines:

3) Area of a Triangle:

a) Triangle with one point at $(0,0)$:

Note:

$>$ To find the area of a triangle using the formula below, one of the points must be $(0,0)$.

Example 1: Find the area of the triangle with coordinates $(0,0)$, $(4,-1)$ and $(5,-3)$.

Area $=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right| \quad\left(x_{1}, y_{1}\right)=(4,-1)\left(x_{2}, y_{2}\right)=(5$,
-3)
Area $=\frac{1}{2}|(4)(-3)-(5)(-1)|$
Area $=\frac{1}{2}|-12+5|$
Area $=\frac{1}{2}|-7| \quad$ (taking the positive value of what's in the \mid
I)

Area $=\frac{1}{2}(7)=3.5$ units 2

b) Triangle with no points at $(0,0)$:

Note:

> If none of the points are (0,0), you have to move one point to $(0,0)$ and move the other points under the same translation.

Example 2: Find the area of the triangle with coordinates $(3,-1)$, $(5,2)$ and $(-2,-3)$.

- Choose one point e.g. ($3,-1$) and move it to $(0,0)$ first and then move the other points by the same:
$(3,-1)$
$\rightarrow(0,0) \quad$ (take 3 from x, add 1 to y)
$(5,2)$
$(2,3) \quad$ (take 3 from x, add 1 to y)
$(-2,-3)$ \qquad $(-5,-2) \quad$ (take 3 from x, add 1 to y)
- Now proceed as Example 1 with the three new points:

Area $=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right| \quad\left(x_{1}, y_{1}\right)=(2,3)\left(x_{2}, y_{2}\right)=(-5,-$
2)

Area $=\frac{1}{2}|(2)(-2)-(3)(-5)|$
Area $=\frac{1}{2}|-4+15|$
Area $=\frac{1}{2}|11|$
Area $=\frac{1}{2}(11)=5.5$ units 2

4) Line Segment Division/Graphing Lines:

a) Line Segment Division:

Notes:
> To find a point P along a line, that divides it into a certain ratio a :b :

($\mathrm{x}_{1}, \mathrm{y}_{1}$)

Example: $C(-3,5)$ and $D(7,-6)$ are two points. Find the coordinates of the point E, when E is a point on $[C D]$ such that $|C E|:|D E|=2: 3$.

$$
\begin{aligned}
P & =\left(\frac{b x_{1}+a x_{2}}{b+a}, \frac{b y_{1}+a y_{2}}{b+a}\right) \\
& =\left(\frac{3(-3)+2(7)}{3+2}, \frac{3(5)+2(-6)}{3+2}\right) \\
& =\left(\frac{-9+14}{5}, \frac{15-12}{5}\right)=\left(1, \frac{3}{5}\right)
\end{aligned}
$$

b) Graphing Lines:

Notes:

\rightarrow We can use the equation of the line $y=m x+c$ (See Section 1d) to draw/sketch lines.
> An alternative method to draw/sketch lines is to find the two points where the line crosses the X and Y axes.
> All points on the x-axis have a y-coordinate of 0 .
$>$ All points on the y-axis have a x-coordinate of 0 .

Example: Graph the lines $k: 3 x-4 y+12=0$ and $q: 3 x+2 y-5=$ 0 .

k: $3 x-4 y+12=0$	$q: 3 x+2 y-5=0$		
x Intercept $(y=0)$	y Intercept $(x=0)$	x Intercept $(y=0)$	y Intercept $(x=0)$
$3 x-4 y+12=$ 0	$3 x-4 y+12=$ 0	$3 x+2 y-5=0$	$3 x+2 y-5=0$
$3 x-0+12=0$	$0-4 y+12=0$	$3 x+0-5=0$	$0+2 y-5=0$
$3 x=-12$	$-4 y=-12$	$3 x=5$ $x=-4$	$x=\frac{5}{3}$
$(-4,0)$	$(0,3)$	$\left(\frac{5}{3}, 0\right)$	$2 y=5$
		$\left(0, \frac{5}{2}\right)$	

5) Perpendicular Distance from a point to a line:

Notes:

$>\quad$ The shortest distance from a point $\left(x_{1}, y_{1}\right)$ to a line $a x+b y+$ $c=0$ is the perpendicular distance and it's given by the formula:
$>$ To find the shortest distance between two parallel lines, find a point on one line, and then use formula below to find distance from the point to the other line.
> Parallel lines will have equations $a x+b y+c=0$ and $a x+b y+d=0$.
\rightarrow Perpendicular lines will have equations $a x+b y+c=0$ and $b x-a y+c=0$ i.e. Swap x and y coefficients and change sign of y

Example 1: Find the perpendicular distance from $(-2,5)$ to the line $3 x-2 y+7=0$.
$\rightarrow \quad$ The point $(-2,5)$ is our $\left(x_{1}, y_{1}\right)$
$>$ We now fill into the formula:

$$
\begin{aligned}
d & =\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \\
& =\frac{|(3)(-2)-(2)(5)+7|}{\sqrt{(3)^{2}+(-2)^{2}}} \\
& =\frac{|-6-10+7|}{\sqrt{13}}=\frac{|-9|}{\sqrt{13}}=\frac{9}{\sqrt{13}}
\end{aligned}
$$

Example 2: Find the shortest distance between the two parallel lines $p: 2 x-3 y+4=0$ and $q: 2 x-3 y-8=0$.
$>$ Find a point on one of the lines first, so let's find a point on p.
\rightarrow Find where the line crosses the x-axis i.e. where $y=0$

$$
\begin{aligned}
& 2 x-3 y+4=0 \\
& 2 x-3(0)+4=0 \\
& 2 x=-4 \\
& x=-2 \Rightarrow \text { Point }=(-2,0)
\end{aligned}
$$

$>$ Now use formula to find the shortest distance between the two lines i.e. distance from $(-2,0)$ to line $q: 2 x-3 y-8=0$

$$
\begin{aligned}
d & =\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \\
& =\frac{|(2)(-2)-(3)(0)-8|}{\sqrt{(2)^{2}+(-3)^{2}}}=\frac{|-4-8|}{\sqrt{4+9}}=\frac{|-12|}{\sqrt{13}}=\frac{12}{\sqrt{13}}
\end{aligned}
$$

Example 3: Find the equation of two lines that are parallel to the line $x+2 y-5=0$ and a distance of $7 \sqrt{5}$ from it.
\rightarrow Any line parallel to the line $x+2 y-5=0$ will be of the form
$x+2 y+c=0$.
\rightarrow A point on the line $x+2 y-5=0$ will be $7 \sqrt{5}$ from these lines.
\rightarrow A point on the line $x+2 y-5=0$ would be $(1,2)$

$$
\begin{aligned}
d & =\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \\
& =\frac{|(1)(1)+(2)(2)+c|}{\sqrt{(1)^{2}+(2)^{2}}}=\frac{|1+4+c|}{\sqrt{1+4}}=\frac{|5+c|}{\sqrt{5}}
\end{aligned}
$$

$\Rightarrow \quad$ This distance is $=7 \sqrt{5}$.

$$
\begin{gathered}
\frac{|5+c|}{\sqrt{5}}=\frac{7 \sqrt{5}}{1} \\
|5+c|=7 \sqrt{5} \sqrt{5} \quad \text { (Cross multiplying) } \\
|5+c|=35 \\
|5+c|)^{2}=(35)^{2} \quad \text { (squaring both sides) } \\
25+10 c+c^{2}=1225 \\
c^{2}+10 c-1200=0 \\
\Rightarrow c=-40 \text { or } \quad c=30
\end{gathered}
$$

\rightarrow So the two equations will be: $x+2 y-40=0$ and $x+2 y+30=0$.

6) Angle between Lines:

Notes:

> Can find the angle θ between two lines if we know the slopes of the two lines using the formula:

$>\quad$ The \pm gives us two values for $\operatorname{Tan} \theta$. One value will give us the acute angle between the lines and the other gives us the obtuse angle between the lines.
Example 1: Find the angle between the lines $q: 3 x-4 y+8=0$ and $r: 2 x+5 y-3=0$.

Slope of line $q=\frac{-x \text { number }}{y \text { number }}=\frac{-3}{-4}=\frac{3}{4} \quad$ Slope of line $r=\frac{-2}{5}$

$$
\operatorname{Tan} \theta= \pm \frac{\left(\frac{3}{4}\right)-\left(-\frac{2}{5}\right)}{1+\left(\frac{3}{4}\right)\left(-\frac{2}{5}\right)}
$$

$$
\begin{array}{lll}
\operatorname{Tan} \theta= \pm \frac{\frac{3}{4}+\frac{2}{5}}{1-\frac{3}{10}}= \pm \frac{\frac{23}{20}}{\frac{7}{10}}= \pm \frac{23}{14} & \begin{array}{r}
\text { Obtuse angle } \\
\\
=180-58.67
\end{array} \\
\Rightarrow \theta=\tan ^{-1}\left(\frac{23}{14}\right)=58.67^{\circ} & =121.33^{\circ}
\end{array}
$$

Example 2: Find the equations of two lines through the point (-1, 2) that make an angle of 45° with the line $12 x+2 y-3=0$.
$>$ Firstly, we need to find the slope of the line we're given:

$$
\begin{gathered}
12 x+2 y-3=0 \\
\Rightarrow \text { Slope }=\frac{-x \text { number }}{\text { ynumber }}=\frac{-12}{2}=-6
\end{gathered}
$$

$>$ Let the slope of the two lines we're looking for $=$ ' m '

$$
\operatorname{Tan} \theta= \pm \frac{(-6)-(m)}{1+(-6)(m)}= \pm \frac{-6-m}{1-6 m}
$$

$>\quad$ The angle between the lines is 45° and $\operatorname{Tan}(45)=1$ so

$$
1= \pm \frac{-6-m}{1-6 m}
$$

> Want the positive value of the RHS so, square both sides:

$$
1=\frac{36+12 m+m^{2}}{1-12 m+36 m^{2}}
$$

$$
36+12 m+m^{2}=1-12 m+36 m^{2} \quad \text { Cross }
$$ multiplying)

$35 m^{2}-24 m-35=0$
$(7 m+5)(5 m-7)=0$
$\Rightarrow m=-\frac{5}{7}$ or $m=\frac{7}{5}$
$>$ So, the equation of our two lines through the point $(-1,2)$

$y-y_{1}=m\left(x-x_{1}\right)$	$y-y_{1}=m\left(x-x_{1}\right)$
$y-2=\frac{-5}{7}(x+1)$	$y-2=\frac{7}{5}(x+1)$
$7(y-2)=-5(x+1)$	$5(y-2)=7(x+1)$
$5 x+7 y-9=0$	$7 x-5 y+3=0$

