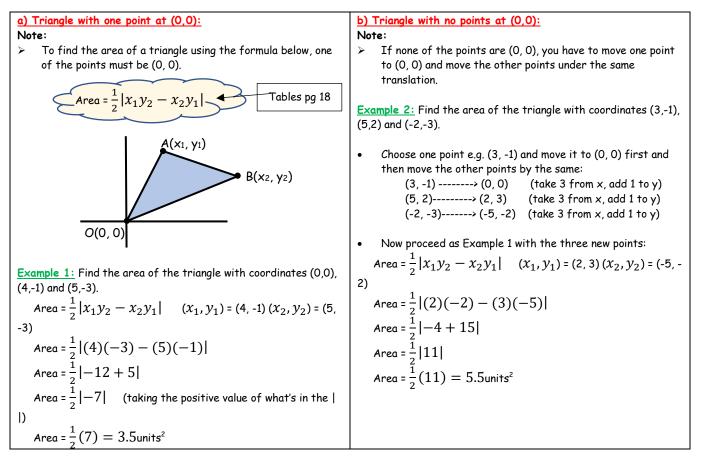

Topic 14: Coordinate Geometry of the Line


1) The Basics:

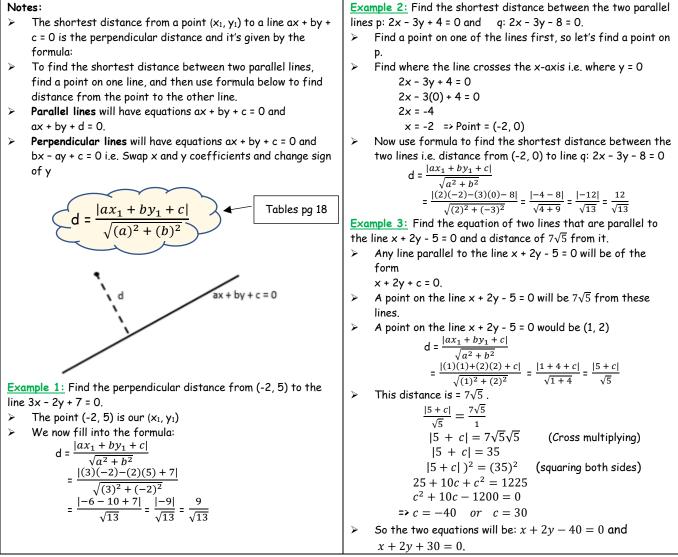
2) Parallel/Perpendicular Lines:

3) Area of a Triangle:

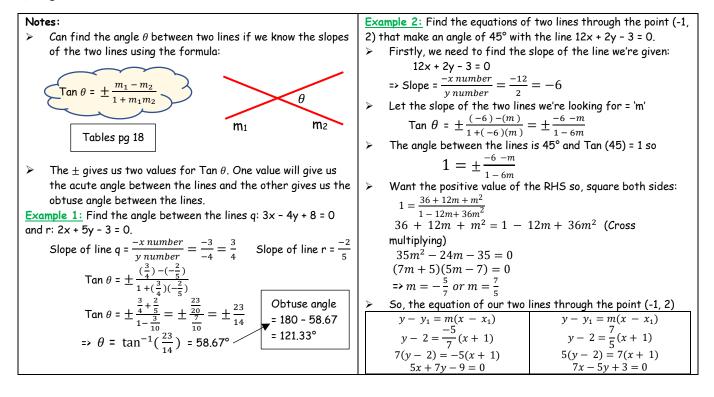
4) Line Segment Division/Graphing Lines:

a) Line Segment Division: Notes: \triangleright To find a point P along a line, that divides it into a certain ratio a:b : Tables P = $\left(\frac{bx_1 + ax_2}{b + a}, \frac{by_1 + ay_2}{b + a}\right)$ pg 18 b = 3D(7, -6) a = 2 (x2, y2) Ē C(-3, 5) (x1, y1) Example: C(-3, 5) and D(7, -6) are two points. Find the coordinates of the point E, when E is a point on [CD] such that |CE|:|DE| = 2:3. $P = (\frac{bx_1 + ax_2}{by_1 + ay_2})$

$$= \left(\frac{3(-3)+2(7)}{3+2}, \frac{3(5)+2(-6)}{3+2}\right)$$
$$= \left(\frac{-9+14}{5}, \frac{15-12}{5}\right) = \left(1, \frac{3}{5}\right)$$


b) Graphing Lines: Notes:

- We can use the equation of the line y = mx + c (See Section 1d) to draw/sketch lines.
- An alternative method to draw/sketch lines is to find the two points where the line crosses the X and Y axes.
- > All points on the x-axis have a y-coordinate of 0.
- > All points on the y-axis have a x-coordinate of 0.


Example: Graph the lines k: 3x - 4y + 12 = 0 and q: 3x + 2y - 5 = 0.

k: 3x - 4y + 12 = 0		q: 3x + 2y - 5 = 0	
x Intercept	y Intercept	x Intercept	y Intercept
(y = 0)	(x = 0)	(y = 0)	(x = 0)
3x - 4y + 12 =	3x - 4y + 12 =	3x + 2y - 5 = 0	3x + 2y - 5 = 0
0	0		
		3x + 0 - 5 = 0	0 + 2y - 5 = 0
3x - 0 + 12 = 0	0 - 4y + 12 = 0		
		3x = 5	2y = 5
3x = -12	-4y = -12	$x = \frac{5}{3}$	$y = \frac{5}{2}$
x = -4	y = 3	-	_
		$(\frac{5}{2}, 0)$	$(0, \frac{5}{2})$
(-4, 0)	(0, 3)	(3,0)	(°, ₂)

5) Perpendicular Distance from a point to a line:

6) Angle between Lines:

