1) Indices

a) The Laws of Indices:	b) Solving equations with indices:
1) $a^p x a^q = a^{p+q}$ e.g. $4^4 x 4^3 = 4^7$	Steps:
2) $\frac{a^p}{a^q} = a^{p-q}$ $e.g \frac{5^3}{5^2} = 5^{3-2} = 5^1$ See Tables pg 21	1. Try and spot which powers you're dealing with, using the table below e.g. if you see a 9 and an 27 in the question, it would be powers of 3
3) $(a^p)^q = a^{pq}$ $e.g (5^2)^3 = 5^6$	2. Tidy up both sides of the equation into a single power using the laws of indices above $e = a = 5^{\circ}$
4) $a^0 = 1$ $e.g. 7^0 = 1$ or $(0.5)^0 = 1$	 If the bases are the same on both sides, you can now let the powers be equal to each other. i.e. x = y
5) $a^{-p} = \frac{1}{a^p}$ $e.g. \ 3^{-2} = \frac{1}{3^2} = \frac{1}{9}$	4. Solve the simple equation to find your solution.
6) $(ab)^p = a^p b^p$ $e.g. (3x)^2 = 3^2 x^2 = 9x^2$	Example: Solve $3^{\times} = 27\sqrt{3}$
7) $\left(\frac{a}{b}\right)^p = \frac{a^p}{b^p}$ e.g. $\left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3} = \frac{8}{27}$	$3^{x} = 3^{3} \cdot 3^{\frac{1}{2}}$ using Law 8 above on the $\sqrt{3}$ $3^{x} = 3^{3+1/2}$ using Law 1
8) $a^{\frac{1}{2}} = \sqrt{a}$ e.g. $9^{\frac{1}{2}} = \sqrt{9} = 3$ 9) $a^{\frac{1}{3}} = \sqrt[3]{a}$ e.g. $27^{\frac{1}{3}} = \sqrt[3]{27} = 3$	$3^x = 3^{7/2}$ tidying up the power into a single fraction => $x = 7/2$ as the bases are equal

c) Table of Powers:

Note: It can be familiar to be able to recognise some of the more common powers. A table of them is shown below.

×	×1	x ²	× ³	× ⁴	x ⁵	× ⁶	x ⁷	x ⁸
2	2	4	8	16	32	64	128	256
3	3	9	27	81	243			
4	4	16	64	256				
5	5	25	125	625				
6	6	36	216					
7	7	49	343					
8	8	64	512					
9	9	81	729					
10	10	100	1000					

2) Surds:

Notes:	Reducing Surds:			
 A surd is a number in the form √ that can't be written as a rational number i.e. in the form ^a/_b E.g. √2 and √3 are both surds but √9 is not as it can be written as ³/₁ We can add/subtract similar surds together E.g. i) 3√2 + 5√2 = 8√2 ii) 4√3 + 2√2we can't add these together as the √ parts are different 	• We can use the rule $\sqrt{ab} = \sqrt{a}\sqrt{b}$ to reduce larger surds into a simpler form: Example: Simplify $\sqrt{50} + \sqrt{32}$ • We use 50 = 25 x 2 rather than 10 x 5 as 25 is a square number) $\sqrt{50} + \sqrt{32}$ $= \sqrt{25}\sqrt{2} + \sqrt{16}\sqrt{2}$ $= 5\sqrt{2} + 4\sqrt{2}$ $= 9\sqrt{2}$			