1) Integration:

Definite Integrals:

$$
\begin{array}{cc}
\frac{1}{\sqrt{a^{2}-x^{2}}} & \sin ^{-1} \frac{x}{a} \\
\frac{1}{x^{2}+a^{2}} & \frac{1}{a} \tan ^{-1} \frac{x}{a}
\end{array}
$$

$$
\begin{aligned}
& \int \sin a x d x=-\frac{1}{a} \cos a x+c \\
& \int \cos a x d x=\frac{1}{a} \sin a x+c
\end{aligned}
$$

NOT in

 Tablesb) Integrating trig/exponentials:

$f(x)$	$\int f(x) d x$
e^{x}	e^{x}
$e^{a x}$	$\frac{1}{a} e^{a x}$
a^{x}	$\frac{a^{x}}{\ln a}$
$\sin x$	See Tables pg 26

d) Integration by Substitution:

Steps:

1. Let u = part of the function to be integrated to simplify the integration.
2. Find $d x$ in terms of $d u$.
3. Integrate simplified function.
4. Can change the limits of integration, or replace u with the function from step 1 and use the original limits.
c) Integration by Parts:

See Tables pg 26

Steps:

1. To select the correct u and dv we use the INLATE rule:

Inverse Trig, Logs, Algebra, Trig, Exponents
2. The function that appears EARLIER from INLATE is u and let dv be the rest.
3. Differentiate and Integrate to get du and v.
4. Sub into rule above.
5. Might need more than one iteration to get solution.

2) Rates of Change/Differentiating Vectors:

a) Work done by a Variable Force:

Steps:

1. Get Force in terms of displacement x.
2. Use rule below to calculate work done between two distances a and b .

4) Differential Equations:

a) Type 1: $1^{\text {st }}$ Order with general solutions	b) Type 2: $1^{\text {st }}$ Order with definite values
Steps:	Steps:
1. Multiply both sides by $\mathrm{d} x$ to eliminate fractions.	1. Same first three steps as Type 1.
2. Gather all terms with a ' y ' to one side, and the ' x ' terms to the other.	2. Use information given to evaluate the constant of integration.
3. Integrate both sides. 4. Get y on its own.	3. Fill in the constant of integration and get y on its own.
c) Type 2: $2^{\text {nd }}$ Order Separable	d) Proportionality:
Steps:	> If two quantities P and Q are proportional to each other, we
1. Let some variable be $\frac{d y}{d x}$ e.g. $\frac{d y}{d x}=v$	can say that $P=k Q$.
2. Rewrite the given equation using v.	
3. Proceed as in Type 1 and solve for v.	
4. Work back using the substitution from step 1 and solve for	
y .	

4) General Tips for the Exam:

Do know your integration methods well
Do separate the two sides carefully.
Do put in a scale on all force diagrams.
Do be careful with signs in the force equation.
Do choose intelligently between the two possible expressions for acceleration.
Don't confuse power and force.
Don't put in the initial speed as a force.

