## 1) The Basics of Counting:

| a) Fundamental Principle Of Counting: |
| :--- |
| If one event has $m$ possible outcomes and a second event has $n$ |
| possible outcomes, then there are $m \times n$ total possible outcomes |
| for the two events together. |
| e.g. 2 starters and 5 main courses => 10 possible dinner options |
| b) A Deck Of Cards: |
| - 52 Cards in a deck |
| - 4 suits: Spades \& Clubs (black), Hearts \& Diamonds (red) |
| - Picture Cards: Jack, Queen and King in each suit (12 in total) |

a) Fundamental Principle Of Counting:

If one event has $m$ possible outcomes and a second event has $n$ possible outcomes, then there are $m \times n$ total possible outcomes for the two events together.
b) A Deck Of Cards:

- 52 Cards in a deck
- Picture Cards: Jack, Queen and King in each suit (12 in total)


## c) Different Strategies:

1) We can simply list all possible outcomes.
2) We can make out a two-way table, if there are more than two trials.
e.g. tossing a coin two or more times
3) Sometimes it can be useful to make out a tree diagram, for showing all possible outcomes of two or more trials.
e.g. chance of picking one yellow and a blue bead from a bag of 6 yellow, 5 blue

## 2) Basics of Probability:

## a) Definition of Probability:

- The probability of an event occurring is:

e.g. bag with 5 red and 4 green beads
$P($ Green $)=\frac{4}{9}$


## Note:

> Probability values must be between 0 and 1 (see scale below)


```
b) Terminology:
1. Trial: doing an experiment in probability e.g. tossing a coin
2. Outcome: one of the possible results of the trial e.g. a }6\mathrm{ when
throwing a die
3. Sample space is the set of all possible outcomes in a trial.
4. Event is the occurrence of one or more specific outcomes.
5. Probability is the measure of the chance of an event
happening.
c) Relative Frequency and Carrying Out Experiments:
- We can carry out an experiment or trials to estimate the
    probability of an event occurring.
    e.g. throwing a die to see how many 6's we get
- If you throw a die 20 times and a }6\mathrm{ comes up 3 times we
could estimate the probability of throwing a }6\mathrm{ to be }\frac{3}{20}\mathrm{ .
- This estimate we get from carrying out trials, is called the
Relative Frequency.
- More trials are done => closer the rel freq and probability.
```


## 3) Set Theory and Probability:

## Notes:

$>$ Sets can be used to help solve probability problems.
$>$ Remember that $A \cap B$ represents $A$ AND $B$ whereas $A \cup B$ represents A OR B.
Example: 20 people asked if they preferred Facebook or Twitter. 10 said Facebook, 7 said Twitter and 4 said neither. Person selected at random from the group... what is the probability that the person selected: i) chose Facebook and Twitter ii) chose Facebook or Twitter iii) chose Facebook only?

- Firstly, we need to draw a Venn Diagram to represent the problem.
- 4 people chose neither $\Rightarrow 16$ people chose Facebook or Twitter
- As 10 chose Facebook and 7 chose Twitter $=1$ person chose both
- The Venn Diagram for this problem is shown on the right.

i) P (Chose Facebook AND Twitter) $=F \cap T=\frac{1}{20}$
ii) P (Chose Facebook OR Twitter) $=F \cup T=\frac{16}{20}=\frac{4}{5}$
iii) $P($ Chose Facebook Only $)=\frac{9}{20}$

