1) Indices:

a) The Laws of Indices:	<u>c)</u> T	able	of the	most	Powers	<u>s:</u>				
1) $a^p x a^q = a^{p+q}$ e.g. $4^4 x 4^3 = 4^7$ See Tables										
pg 21	×	x ¹	x ²	× ³	x ⁴	x ⁵	× ⁶	x ⁷	× ⁸	
2) $\frac{a^{q}}{a^{q}} = a^{p}$ q $e.g = 5^{3}$ $2 = 5^{4}$	2	2	4	8	16	32	64	128	256	
3) $(a^p)^q = a^{pq}$ $e.g (5^2)^3 = 5^6$	3	3	9	27	81	243				
4) $a^0 = 1$ $e.g. 7^0 = 1$ or $(0.5)^0 = 1$	4	4	16	64	256					
5) $a^{-p} = \frac{1}{a^p}$ $e.g. 3^{-2} = \frac{1}{3^2} = \frac{1}{9}$	5	5	25	125	625					
6) $(ab)^p = a^p b^p$ $e.g. (3x)^2 = 3^2 x^2 = 9x^2$	6	6	36	216						
a^p 2^{-2^3} 8	7	7	49	343						
7) $(\frac{a}{b})^p = \frac{a}{b^p}$ $e.g. (\frac{a}{3})^3 = \frac{a}{3^3} = \frac{a}{27}$	8	8	64	512						
8) $a^{\frac{1}{2}} = \sqrt{a}$ $e. g. 9^{\frac{1}{2}} = \sqrt{9} = 3$	9	9	81	729						
9) $a^{\frac{1}{3}} = \sqrt[3]{a}$ <i>e.g.</i> $27^{\frac{1}{3}} = \sqrt[3]{27} = 3$	10	10	100	1000						
b) Solving equations with indices:	<u>Exa</u>	nple	2: Solv	ve the e	equatio	on				
Steps: 1. The and met which have a contract dealing with which the	~	C+an	2 ^{2x+1}	– 5(2 ^x) + 2	= 0	n of t	ha fin	at ton	m urina tha
1. Try and spot which powers you're dealing with, using the table below e.a. if you see a 9 and a 27 in the question, it would	-	Laws	of In	dices:	up in	e home	51.01.1	ne fin	STIEN	m, using me
be powers of 3		=> 2 ²	$x^{2^{1}}$	$5(2^{x})$	+ 2 =	0	(Us	ing La	w 1)	
2. Tidy up both sides of the equation into a single power using		=> (2	$(x^{x})^{2}2^{1}$	- 5(2)	⁽) + 2	= 0	(Us	ing La	w 3)	
the laws of indices above. e.g. $5^{x} = 5^{y}$		=> 2($(2^{x})^{2}$ -	$-5(2^{x})$	+ 2 =	= 0	(Mo	oving t	he 2 ¹ c	out in front)
3. If the bases are the same on both sides, you can now let the	~	r_{2}	$(v)^2 -$: 2^: 5(v) +	2 - 0					
4. Solve the simple equation to find your solution.		=> 21	$v^{2} - 5$	v + 2 =	2 — 0 = 0					
		=> (2	y - 1	(y - 2)) = 0					
Example 1: Solve $3^{\times} = 27\sqrt{3}$.		=> y	$=\frac{1}{2}0$	r y = 2						
$3^x=3^3.3^{1\over2}$ using Law 8 above on the $\sqrt{3}$	≻	Now	go bac	:k to ou	r subs	titutio	n to sc	olve fo	r the t	wo x
$3^x = 3^{3+1/2}$ using Law 1		value	S:	1			-	_		
$3^x = 3^{7/2}$ tidying up the power into a single		I	f y =	2	1	f y =	2 - 2 ¹			
fraction		=	> 2 ^x =	$=\frac{1}{2^{1}}$		· Z =	- ∠ ⁻ 1			
=> $x = \frac{1}{2}$ as the bases are equal		=	> 2 ^x =	= 2 ⁻¹		- <i>x</i> -	Ŧ			
		=	> x =	-1						

2) Logarithms:

 a) Definition of Logs: Notes: > Logarithms are the opposite of raising a number to a particular power. > The definition of logs is: 	b) The Laws of Logs: 1) $\log_a(xy) = \log_a x + \log_a y$ e.g. $\log_2(20) = \log_2(20)$ 2) $\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$ e.g $\log_5\left(\frac{2}{3}\right) = \log_2(20)$ 3) $\log_a(x^p) = p \log_a x$ e.g $\log_2 x^3 = 3 \log_2 x$ 4) $\log_a 1 = 0$ e.g. $\log_4 1 = 0$ 5) $\log_a\left(\frac{1}{x}\right) = -\log_a x$ e.g. $\log_2\left(\frac{1}{8}\right) = -\log_2 8$	5 + log ₂ 4 5 2 - log ₅ 3
Example: If $2^\circ = 32$, then we can write that using logs by writing: $\log_2 32 = 5$.	6) $\log_{a}(a^{x}) = x$ e.g. $\log_{4}(4^{x}) = x$ 7) $a^{\log_{a} x} = x$ e.g. $2^{\log_{2} x} = x$ 8) $\log_{b} x = \frac{\log_{a} x}{\log_{a} b}$ e.g. $\log_{8} x = \frac{\log_{2} x}{\log_{2} 8}$	See Tables pg 21

<u>c) Simplifying Expressions:</u>	<u>d) Solving Log Equations:</u>
	Notes:
Example: Simplify $\log_3 2 + 2\log_3 3 - \log_3 18$.	When solving equations with logs, use:
$\log_3 2 + 2\log_3 3 - \log_3 18$	If $\log_a b = \log_a c$
$= \log_3 2 + 2(1) - [\log_3 9 + \log_3 2] \text{(Laws 1,}$	\Rightarrow b = c
6)	Solutions of los equations always have to be shacked
$= \log_3 2 + 2 - \log_3 9 - \log_3 2$	Finally Columbia of the equations always have to be checked.
$= 2 - \log_3 9$ (as $\log_3 2 - \log_3 2 = 0$)	<u>Example:</u> Solve the equation $\log_3(x+1) - \log_3(x-1) = 1$.
$= 2 - 2$ (as $\log_3 9 = 2$)	- Aim is to thay up both sides into a single log, and use rule above.
= 0	$\log_2(r+1) - \log_2(r-1) = 1$
	$\frac{check}{x+1} = \log 2$
	$= r \log_3 \frac{x-1}{x-1} - \log_3 3$ $\log_3 (x+1) - \log_3 (x-1) = 1$ $\log_3 (x+1) - \log_3 (x-1) = 1$
	$\Rightarrow \frac{x+1}{x-1} = 3$
	$x^{-1} = 3x - 3$
	= 2x = 4
	x = 2
e) Equations involving Change of Base Law:	e) Problem Solving with Logs:
Notes:	Example 1: Population, P, is modelled as $P = 12300(e^{0.073t})$, where t is in
Easier to change higher bases to lower bases	years. After how many years, will the population reach 20,000 people?
Example: Solve the equation	$P = 12300(e^{0.073t})$
$\log_2(x+1) + \log_4(x) = \log_4(x^3+1).$	$\Rightarrow 20000 = 12300(e^{0.073t})$
Change all logs to base 2 first:	$\Rightarrow e^{0.073t} = \frac{20000}{10000} = 1.626$ (dividing both sides by 12300)
$\Rightarrow \log_2(x+1) + \frac{\log_2(x)}{\log_2 4} = \frac{\log_2(x^3+1)}{\log_2 4}$	=> $\ln e^{0.073t} = \ln 1.626$ (taking natural log of both sides to eliminate
$\Rightarrow \log_2(x+1) + \frac{\log_2(x)}{\log_2(x)} = \frac{\log_2(x^3+1)}{\log_2(x^3+1)}$	e)
$2^{-2} 2 \log_2(r+1) + \log_2(r) = \log_2(r^3 + 1)$	$\Rightarrow 0.073t = \ln 1.626$ (using Law 6 as $\ln e = 1$)
- RHS is a single log as it is but we have a few more	$\Rightarrow t = \frac{\ln 1.626}{0.072} = \frac{0.486}{0.072} = 6.7 yrs$
steps to do to the LHS to tidy it up into a single log:	Example 2: Amount of radioactive tracer remaining after t days is given by
$\Rightarrow \log_2(x+1)^2 + \log_2(x) = \log_2(x^3 + 1)$	$A = A_{c}(e^{-0.058t})$ A_{c} = starting amount How many days will it take for one
$\Rightarrow \log_2(x+1)^2(x) = \log_2(x^3+1)$	half of the original amount to decay?
- Can now eliminate the logs, as we have a single log	- Key in this type of question is we want one half of the original amount
on both sides, with the same power:	$\Rightarrow A = \frac{A_o}{A}$ or $A_o = 2A$
$(x)(x+1)^2 = x^3 + 1$	$A^{2} = A (e^{-0.058t})$
$\Rightarrow (x)(x^{2} + 2x + 1) = x^{3} + 1$	$A = 2A(e^{-0.058t}) \qquad (f:!!inc in A = 2A)$
$\Rightarrow x^{3} + 2x^{2} + x = x^{3} + 1$	$A = 2A(e^{-1}) \qquad (11111111111111111111111111111111111$
$\Rightarrow 2x^2 + x - 1 = 0$	=> $1 = 2(e^{-0.038t})$ (dividing both sides by A)
$-x - \frac{1}{2}$ or $x - \frac{1}{2}$	$\Rightarrow 0.5 = e^{-0.058t}$ (dividing both sides by 2)
$-7 x - \frac{1}{2} 07 x - 1$	=> $\ln 0.5 = \ln e^{-0.058t}$ (taking In of both sides)
- Checking the answers eliminates $x = \frac{1}{2}$ as a	=> $\ln 0.5 = -0.058t$ (using Law 6 as $\ln e = 1$)
solution, so the answer is $x = -1$	=> $t=rac{\ln 0.5}{-0.058}=11.95=12 days$ (dividing both sides by -
	0.058)

15) Surds:

<u>a) Surds:</u>	Example 1: Solve the equation $\sqrt{2x+3} = 3$.					
Notes:						
> A surd is a number in the form $\sqrt{-}$ that can't be written as a rational number i.e. in the form $\frac{a}{b}$ E.g. $\sqrt{2}$ and $\sqrt{3}$ are both surds but $\sqrt{9}$ is not as it can be written as $\frac{3}{-}$	$(\sqrt{2x+3})^2 = (3)^2 \text{ (Square both sides)} 2x+3=9>x=3 (Square both sides) \sqrt{2x+3}=3 \sqrt{2(3)+3}=3 \sqrt{9}=3 $					
 We can add/subtract similar surds together E.g. i) 3√2 + 5√2 = 8√2 ii) 4√3 + 2√2we can't add these together as the √ parts are different 	 Example 2: Solve the equation √x + 7 + √x + 2 = 5. More than one surd => rearrange the equation so there is one surd on each side and then square both sides as before: 					
 b) Reducing Surds: We can use the rule √ab = √a√b to reduce larger surds into a simpler form: Example: Simplify √50 + √32 We use 50 = 25 × 2 rather than 10 × 5 as 25 is a square number) √50 + √32 = √25√2 + √16√2 = 5√2 + 4√2 = 9√2 	$\sqrt{x+7} = 5 - \sqrt{x+2}$ $(\sqrt{x+7})^2 = (5 - \sqrt{x+2})^2$ $x + 7 = 25 - 10\sqrt{x+2} + x + 2$ $x + 7 = x + 27 - 10\sqrt{x+2}$ > Bring surd to one side and everything else to the other side: $10\sqrt{x+2} = 20$ > Square both sides again as before: $(10\sqrt{x+2})^2 = (20)^2$ $100(x+2) = 400$ $100x = 200$					
 c) Solving Surd Equations: Notes: A general rule of thumb for solving equations with surds is to square both sides. When squared both sides, there is sometimes an incorrect answer introduced so we always have to check our answers when solving surd equations. 	x = 2 Check: $\sqrt{x + 7} + \sqrt{x + 2} = 5$ $\sqrt{(2) + 7} + \sqrt{(2) + 2} = 5$ $\sqrt{9} + \sqrt{4} = 5$ 3 + 2 = 5 5 = 5					