1) Indices:
a) The Laws of Indices:
2) $a^{p} \times a^{q}=a^{p+q} \quad$ e.g. $4^{4} \times 4^{3}=4^{7}$
3) $\frac{a^{p}}{a^{q}}=a^{p-q}$
e.g $\frac{5^{3}}{5^{2}}=5^{3-2}=5^{1}$

See Tables pg 21
3) $\left(a^{p}\right)^{q}=a^{p q}$
e. $g\left(5^{2}\right)^{3}=5^{6}$
4) $a^{0}=1$
e.g. $7^{0}=1$ or $(0.5)^{0}=1$
5) $a^{-p}=\frac{1}{a^{p}}$
e.g. $3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$
6) $(a b)^{p}=a^{p} b^{p}$
e.g. $(3 x)^{2}=3^{2} x^{2}=9 x^{2}$
7) $\left(\frac{a}{b}\right)^{p}=\frac{a^{p}}{b^{p}}$
e.g. $\left(\frac{2}{3}\right)^{3}=\frac{2^{3}}{3^{3}}=\frac{8}{27}$
8) $a^{\frac{1}{2}}=\sqrt{a}$
e.g. $9^{\frac{1}{2}}=\sqrt{9}=3$
9) $a^{\frac{1}{3}}=\sqrt[3]{a}$
e.g. $27^{\frac{1}{3}}=\sqrt[3]{27}=3$

b) Solving equations with indices:

Steps:

1. Try and spot which powers you're dealing with, using the table below e.g. if you see a 9 and a 27 in the question, it would be powers of 3
2. Tidy up both sides of the equation into a single power using the laws of indices above. e.g. $5^{x}=5^{y}$
3. If the bases are the same on both sides, you can now let the powers be equal to each other. i.e. $x=y$
4. Solve the simple equation to find your solution.

Example 1: Solve $3^{x}=27 \sqrt{3}$.
$3^{x}=3^{3} .3^{\frac{1}{2}}$......using Law 8 above on the $\sqrt{3}$
$3^{x}=3^{3+1 / 2} \ldots \ldots . .$. using Law 1
$3^{x}=3^{7 / 2}$.............tidying up the power into a single
fraction
$\Rightarrow x=7 / 2 \ldots$.......as the bases are equal
c) Table of the most Powers:

x	x^{1}	x^{2}	x^{3}	x^{4}	x^{5}	x^{6}	x^{7}	x^{8}
2	2	4	8	16	32	64	128	256
3	3	9	27	81	243			
4	4	16	64	256				
5	5	25	125	625				
6	6	36	216					
7	7	49	343					
8	8	64	512					
9	9	81	729					
10	10	100	1000					

Example 2: Solve the equation

$$
2^{2 x+1}-5\left(2^{x}\right)+2=0
$$

> Start by breaking up the power of the first term, using the Laws of Indices:
$\Rightarrow 2^{2 x} 2^{1}-5\left(2^{x}\right)+2=0$
(Using Law 1)
$\Rightarrow\left(2^{x}\right)^{2} 2^{1}-5\left(2^{x}\right)+2=0$
(Using Law 3)
$\Rightarrow 2\left(2^{x}\right)^{2}-5\left(2^{x}\right)+2=0$
(Moving the 2^{1} out in front)
> Now let $\mathrm{y}=2^{\mathrm{x}}$:
$\Rightarrow 2(y)^{2}-5(y)+2=0$
$\Rightarrow 2 y^{2}-5 y+2=0$
$\Rightarrow(2 y-1)(y-2)=0$
$\Rightarrow y=\frac{1}{2}$ or $y=2$
> Now go back to our substitution to solve for the two x values:

If $y=\frac{1}{2}$	If $y=2$
$\Rightarrow 2^{x}=\frac{1}{2^{1}}$	$\Rightarrow 2^{x}=2^{1}$
$\Rightarrow 2^{x}=2^{-1}$	
$\Rightarrow x=-1$	

2) Logarithms:

a) Definition of Logs:

Notes:

> Logarithms are the opposite of raising a number to a particular power.
$>$ The definition of logs is:

Example: If $2^{5}=32$, then we can write that using logs by writing: $\log _{2} 32=5$.
b) The Laws of Logs:

1) $\log _{a}(x y)=\log _{a} x+\log _{a} y \quad$ e.g. $\log _{2}(20)=\log _{2} 5+\log _{2} 4$
2) $\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y \quad$ e.g $\log _{5}\left(\frac{2}{3}\right)=\log _{5} 2-\log _{5} 3$
3) $\log _{a}\left(x^{p}\right)=p \log _{a} x \quad$ e.g $\log _{2} x^{3}=3 \log _{2} x$
4) $\log _{a} 1=0 \quad$ e.g. $\log _{4} 1=0$
5) $\log _{a}\left(\frac{1}{x}\right)=-\log _{a} x \quad$ e.g. $\log _{2}\left(\frac{1}{8}\right)=-\log _{2} 8$
6) $\log _{a}\left(a^{x}\right)=x \quad$ e.g. $\log _{4}\left(4^{x}\right)=x$
7) $a^{\log _{a} x}=x$
e.g. $2^{\log _{2} x}=x$
8) $\log _{b} x=\frac{\log _{a} x}{\log _{a} b} \quad$ e.g. $\log _{8} x=\frac{\log _{2} x}{\log _{2} 8}$

See Tables pg 21

c) Simplifying Expressions:

Example: Simplify $\log _{3} 2+2 \log _{3} 3-\log _{3} 18$.

$$
\log _{3} 2+2 \log _{3} 3-\log _{3} 18
$$

$=\log _{3} 2+2(1)-\left[\log _{3} 9+\log _{3} 2\right] \quad$ (Laws 1,
6)
$=\log _{3} 2+2-\log _{3} 9-\log _{3} 2$
$=2-\log _{3} 9 \quad$ (as $\log _{3} 2-\log _{3} 2=0$)
$=2-2$
(as $\log _{3} 9=2$)
$=0$

e) Equations involving Change of Base Law:

Notes:

> Easier to change higher bases to lower bases
Example: Solve the equation
$\log _{2}(x+1)+\log _{4}(x)=\log _{4}\left(x^{3}+1\right)$.
> Change all logs to base 2 first:
$\Rightarrow \log _{2}(x+1)+\frac{\log _{2}(x)}{\log _{2} 4}=\frac{\log _{2}\left(x^{3}+1\right)}{\log _{2} 4}$
$\Rightarrow \log _{2}(x+1)+\frac{\log _{2}(x)}{2}=\frac{\log _{2}\left(x^{3}+1\right)}{2}$
$\Rightarrow 2 \log _{2}(x+1)+\log _{2}(x)=\log _{2}\left(x^{3}+1\right)$

- RHS is a single log as it is, but we have a few more steps to do to the LHS to tidy it up into a single log: $\Rightarrow \log _{2}(x+1)^{2}+\log _{2}(x)=\log _{2}\left(x^{3}+1\right)$ $\Rightarrow \log _{2}(x+1)^{2}(x)=\log _{2}\left(x^{3}+1\right)$
- Can now eliminate the logs, as we have a single log on both sides, with the same power:

$$
\begin{aligned}
& \Rightarrow(x)(x+1)^{2}=x^{3}+1 \\
& \Rightarrow(x)\left(x^{2}+2 x+1\right)=x^{3}+1 \\
& \Rightarrow x^{3}+2 x^{2}+x=x^{3}+1 \\
& \Rightarrow 2 x^{2}+x-1=0 \\
& \Rightarrow x=\frac{1}{2} \quad \text { or } x=-1
\end{aligned}
$$

- Checking the answers eliminates $x=\frac{1}{2}$ as a solution, so the answer is $x=-1$

d) Solving Log Equations:

Notes:

> When solving equations with logs, use:

> Solutions of log equations always have to be checked.
Example: Solve the equation $\log _{3}(x+1)-\log _{3}(x-1)=1$.

- Aim is to tidy up both sides into a single log, and use rule above.
- Use Law 2 to tidy up the LHS, and Law 6 to rewrite ' 1 ' on the RHS:

$$
\begin{array}{l|l}
\log _{3}(x+1)-\log _{3}(x-1)=1 \\
=\log _{3} \frac{x+1}{x-1}=\log _{3} 3 \\
\Rightarrow \frac{x+1}{x-1}=3 \\
\Rightarrow x+1=3 \mathrm{x}-3 \\
\Rightarrow 2 x=4 \\
\Rightarrow x=2
\end{array} \begin{aligned}
& \frac{\text { Check: }}{\log _{3}(x+1)-\log _{3}(x-1)=1} \\
& \Rightarrow \log _{3}(2+1)-\log _{3}(2-1)=1 \\
& \Rightarrow \log _{3}(3)-\log _{3}(1)=1 \\
& \Rightarrow 1-0=1 \\
& \Rightarrow 1=1
\end{aligned}
$$

e) Problem Solving with Logs:

Example 1: Population, P, is modelled as $P=12300\left(e^{0.073 t}\right)$, where \dagger is in years. After how many years, will the population reach 20,000 people?
$P=12300\left(e^{0.073 t}\right)$
$\Rightarrow 20000=12300\left(e^{0.073 t}\right)$
$\Rightarrow e^{0.073 t}=\frac{20000}{12300}=1.626 \quad$ (dividing both sides by 12300)
$\Rightarrow \ln e^{0.073 t}=\ln 1.626 \quad$ (taking natural \log of both sides to eliminate
e)

$$
\begin{aligned}
& \Rightarrow 0.073 \mathrm{t}=\ln 1.626 \quad \quad \text { (using Law } 6 \text { as } \ln e=1) \\
& \Rightarrow \mathrm{t}=\frac{\ln 1.626}{0.073}=\frac{0.486}{0.073}=6.7 \mathrm{yrs}
\end{aligned}
$$

Example 2: Amount of radioactive tracer remaining after \dagger days is given by $A=A_{o}\left(e^{-0.058 t}\right) . A_{0}=$ starting amount. How many days, will it take for one half of the original amount to decay?

- Key in this type of question is we want one half of the original amount $\Rightarrow A=\frac{A_{o}}{2}$ or $A_{o}=2 A$
${ }^{2} A=A_{o}\left(e^{-0.058 t}\right)$
$A=2 A\left(e^{-0.058 t}\right) \quad$ (filling in $A_{o}=2 A$)
$\Rightarrow 1=2\left(e^{-0.058 t}\right) \quad$ (dividing both sides by A)
$\Rightarrow 0.5=e^{-0.058 t}$
(dividing both sides by 2)
$\Rightarrow \ln 0.5=\ln e^{-0.058 t} \quad$ (taking \ln of both sides)
$\Rightarrow \ln 0.5=-0.058 t \quad$ (using Law 6 as $\ln e=1$)
$\Rightarrow t=\frac{\ln 0.5}{-0.058}=11.95=12$ days \quad (dividing both sides by -
0.058)

15) Surds:

a) Surds:

Notes:

> A surd is a number in the form $\sqrt{ }$ that can't be written as a rational number i.e. in the form $\frac{a}{b}$
E.g. $\sqrt{2}$ and $\sqrt{3}$ are both surds but $\sqrt{9}$ is not as it can be written as $\frac{3}{1}$
> We can add/subtract similar surds together E.g. i) $3 \sqrt{2}+5 \sqrt{2}=8 \sqrt{2}$
ii) $4 \sqrt{3}+2 \sqrt{2}$........we can't add these together as the parts are different
b) Reducing Surds:

- We can use the rule $\sqrt{a b}=\sqrt{a} \sqrt{b}$ to reduce larger surds into a simpler form:
Example: Simplify $\sqrt{50}+\sqrt{32}$
- We use $50=25 \times 2$ rather than 10×5 as 25 is a square number)
$\sqrt{50}+\sqrt{32}$
$=\sqrt{25} \sqrt{2}+\sqrt{16} \sqrt{2}$
$=5 \sqrt{2}+4 \sqrt{2}$
$=9 \sqrt{2}$

c) Solving Surd Equations:

Notes:

- A general rule of thumb for solving equations with surds is to square both sides.
> When squared both sides, there is sometimes an incorrect answer introduced so we always have to check our answers when solving surd equations.

Example 1: Solve the equation $\sqrt{2 x+3}=3$.

$$
\begin{aligned}
& \text { Check: } \\
& \sqrt{2 x+3}=3 \\
& \sqrt{2(3)+3}=3 \\
& \sqrt{9}=3
\end{aligned}
$$

Example 2: Solve the equation $\sqrt{x+7}+\sqrt{x+2}=5$.
> More than one surd $\Rightarrow>$ rearrange the equation so there is one surd on each side and then square both sides as before:

$$
\begin{aligned}
& \sqrt{x+7}=5-\sqrt{x+2} \\
& (\sqrt{x+7})^{2}=(5-\sqrt{x+2})^{2} \\
& x+7=25-10 \sqrt{x+2}+x+2 \\
& x+7=x+27-10 \sqrt{x+2}
\end{aligned}
$$

$>$ Bring surd to one side and everything else to the other side:

$$
10 \sqrt{x+2}=20
$$

> Square both sides again as before:

$$
\begin{aligned}
& (10 \sqrt{x+2})^{2}=(20)^{2} \\
& 100(x+2)=400 \\
& 100 x=200 \\
& x=2 \\
& \text { Check: } \\
& \sqrt{x+7}+\sqrt{x+2}=5 \\
& \sqrt{(2)+7}+\sqrt{(2)+2}=5 \\
& \sqrt{9}+\sqrt{4}=5 \\
& 3+2=5 \\
& 5=5
\end{aligned}
$$

