Topic 11: Coordinate Geometry (The Line and The Circle)

1) The Basics:

a) Cartesian Plane/Coordinates:

Notes:

\rightarrow Coordinates must be listed in brackets with a comma in between the two numbers
$>$ We always list the X value first and the Y value second...see examples in diagram above.
$>$ The point $(0,0)$, shown in purple, is also called the Origin.
> The X and Y axes divides the plane up into 4 quadrants

- Quadrant 1 is top right of the plane and they are numbered in an anti-clockwise direction

b) Distance/Midpoint Formula:

e) Intersecting Lines:

We can find where two lines meet by solving the equations simultaneously. See Algebra - Section 5a

f) Graphing/Sketching Lines:

Easiest method: Find where the line crosses the x-axis ($y=$ 0) and the y-axis $(x=0)$

c) Slope:
 Notes:

> Slope is a measure of the steepness of a line.
$>$ Slopes can be negative or positive:

There are three different ways we can find it:

Formula when we		
know 2 points:	When given diagram:	When given the equation of the line in the form
Sax + by $+c=0$		

d) Equation of a line:

Notes:

> A unique licence plate that identifies a particular line.
> To use the formula, we have to know:

- A point on the line
- The slope of the line (See section above)
> Once we know the two things above we use the formula:

> The equation of a line can also be given in the form:

where ' m ' = the slope and ' c ' = the y-intercept (where the line crosses the y-axis)
Example: A line with equation $y=3 x-5$ has a slope of 3 and crosses the y-axis at the point $(0,-5)$.

2) Parallel/Perpendicular Lines:

a) Triangle with one point at $(0,0)$:

Note:

$>$ To find the area of a triangle using the formula below, one of the points must be $(0,0)$.

Example 1: Find the area of the triangle with coordinates $(0,0)$,
$(4,-1)$ and $(5,-3)$.
Area $=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right| \quad\left(x_{1}, y_{1}\right)=(4,-1)\left(x_{2}, y_{2}\right)=(5,-3)$
Area $=\frac{1}{2}|(4)(-3)-(5)(-1)|$
Area $=\frac{1}{2}|-12+5|$
Area $=\frac{1}{2}|-7| \quad$ (taking the positive value of what's in the $|\mid$)
Area $=\frac{1}{2}(7)=3.5$ units 2

b) Triangle with no points at $(0,0)$:

Note:

$>$ If none of the points are $(0,0)$, you have to move one point to $(0,0)$ and move the other points under the same translation.

Example 2: Find the area of the triangle with coordinates $(3,-1)$, $(5,2)$ and $(-2,-3)$.

- Choose one point e.g. $(3,-1)$ and move it to $(0,0)$ first and then move the other points by the same:
$(3,-1)$
$(0,0) \quad$ (take 3 from x, add 1 to y)
$(5,2)$ \qquad $(2,3) \quad$ (take 3 from x, add 1 to y)
$(-2,-3)$ \qquad $(-5,-2) \quad$ (take 3 from x, add 1 to y)
- Now proceed as Example 1 with the three new points:

Area $=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right| \quad\left(x_{1}, y_{1}\right)=(2,3)\left(x_{2}, y_{2}\right)=(-5,-2)$
Area $=\frac{1}{2}|(2)(-2)-(3)(-5)|$
Area $=\frac{1}{2}|-4+15|$
Area $=\frac{1}{2}|11|$
Area $=\frac{1}{2}(11)=5.5$ units 2

4) Types of Circles:

a) Circle with Centre other than $(0,0)$

Equation: $(x-h)^{2}+(y-k)^{2}=r^{2}$

b) Circle with Centre $(0,0)$:

Not in Tables but can find by subbing in $(0,0)$ for (h, k) in other formula on the left.

5) Points Inside, On or Outside a Circle:

Method 1:

Steps:

1. Write down the radius and centre of the circle.
2. Calculate distance from the point to the centre.
3. Compare distance to radius:

- If Distance < Radius => Point is Inside
- If Distance > Radius $=>$ Point is Outside
- If Distance $=$ Radius $=>$ Point is On Circle

Method 2:
 Steps:

1. Fill in point into equation of the circle.
2. Compare left hand side to right hand side.

- If LHS < RHS \Rightarrow Point is Inside
- If LHS $>$ RHS \Rightarrow Point is Outside
- If LHS = RHS \Rightarrow Point is On Circle

Example: Is the point $(6,-2)$ in, on or outside the circle $(x-2)^{2}+(y+3)^{2}=25$

Method 1:

$R=\sqrt{25}=5$ Centre $=(2,-3)$
Dist from $(2,-3)$ to $(6,-2)$:
$\sqrt{\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}} \sqrt{(6-2)^{2}+(-2+3)^{2}}$
$\sqrt{17}=4.12$
$4.12<5$
\Rightarrow INSIDE circle

Method 2:

$$
(x-2)^{2}+(y+3)^{2}=25
$$

$$
(6-2)^{2}+(-2+3)^{2}
$$

$$
=25
$$

$(4)^{2}+(1)^{2}=25$ $17<25$ => INSIDE circle

6) Intersection of a Line and a Circle:

- Need to be able to find the points of intersection of a line and a circle.
- See Algebra Topic Section 5b

