Topic 6: Calculus

1) The Basics:

3) Curve Sketching:

a) Increasing/Decreasing Functions:	b) Max/Min Points (Turning Points):
Example: Find the range of values of x for which the curve $f(x) = x^2 - 3x + 4$ is increasing. f'(x) = 2x - 3 Increasing => $f'(x) > 0$ 2x - 3 > 0 2x > 3 $=> x > \frac{3}{2}$	Example: Find the max/min points of the curve $f(x) = x^3 - 2x^2 + 4$. $f'(x) = 3x^2 - 4x$ Max/Min \Rightarrow $f'(x) = 0$ $3x^2 - 4x = 0$ $x(3x - 4) = 0$ $x = 0 \text{ or } x = \frac{4}{3}$ Sub into function at start to find y values of 4 and $\frac{76}{27}$. \Rightarrow Turning Points are $(0,4)$ and $(\frac{4}{2}\sqrt{\frac{76}{27}})$

4) Rates of Change:

<u>a) Max/Min Problems:</u>	b) Rates of Change:
Steps:	<u>Tip:</u>
1. Get an expression for quantity to be maximised/minimised.	Differentiate the expression for distance to get expressions for
2. Differentiate.	speed and acceleration.
Let derivative = 0 and solve to find max/min value.	
4. Sub max/min value back into expression from step 1, if	Distance Speed Acceleration
needed.	
Example: A farmer want to enclose a field with 100m of fencing.	
Find the maximum area of the field.	Example: A body moves a distance given by the function $s = t^3 - t^3$
Let Width = x => Length = 50 - x	$3t^2 + 7$, find the body's acceleration after 3 seconds.
=> Area = L x W = $x(50 - x) = 50x - x^2$	Distance = $t^3 - 3t^2 + 7$
=> $A = 50x - x^2$	=> Speed = $3t^2 - 6t$ (differentiating distance
=> $\frac{dA}{dx} = 50 - 2x$ (differentiating expression for area)	expression)
50 - 2x = 0	=> Acceleration = $6t - 6$ (differentiating speed expression)
=> x = 25	So after 2 secs: Acceleration = $6t - 6 = 6(3) - 6 = 12m/s^2$.
=> Max Area will be 50(25) - (25) ² = 625m ²	