1) Arithmetic Sequences/Series:

a) Linear(Arithmetic) Sequences:

Notes:
$>$ A list of numbers where the difference between each term is the same every time.
E.g. 3, 8, 13, 18 ,
> In Senior Cycle, we refer to these sequences as Arithmetic Sequences.
> The General Term for an Arithmetic sequence is:

where ' a ' is the first term and ' d ' is the common difference between the terms.
Example: i) Find the General Term for the sequence 3, 8, 13,
18.....
ii) Find the $50^{\text {th }}$ term, T_{50}.

i) $\Rightarrow T_{n}=3+(n-1) 5$	$5 n-$
$\Rightarrow T_{n}=3+5 n-5$	$\Rightarrow T_{50}=5(50)-2$
$\Rightarrow T_{n}=5 n-2$	$\Rightarrow T_{50}=250-2=248$

b) Arithmetic Series:

Notes:

> If we add the terms of an arithmetic sequence together, then we get an arithmetic series.
> We need to be able to find the sum of the first n terms of such a series, which we can find using:

where ' a ' is the first term and ' d ' is the common difference between the terms of the series.

Example: Find the sum of the first 20 terms of the series $2+6+10+14+\ldots . .$.

$$
\begin{aligned}
& \mathrm{a}=2 \text { and } \mathrm{d}=4 \\
& \Rightarrow S_{20}=\frac{20}{2}\{2(2)+(20-1) 4\} \\
& \Rightarrow S_{n}=10\{4+(19) 4\} \\
& \Rightarrow S_{n}=10\{80\}=800
\end{aligned}
$$

2) Quadratic Sequences:

Notes:

$>$ A sequence where the second difference is the same every time. E.g. 4, 7, 12, 19, 28....... (see below)

Steps to find General Term:

1. Let General Term $=T_{n}=a n^{2}+b n+c$
2. Find $2^{\text {nd }}$ difference and let $=2 a$....solve for a.
3. Use any 2 terms to form two equations in b and c.
4. Solve both equations to find b and c.

Example: Find the General Term of the sequence 4, 7, 12, 19, 28 Step 1: Let the General Term $T_{n}=a n^{2}+b n+c$.
Step 2: Second difference $=2 a=+2 \Rightarrow a=+1$.
Step 3: Use two of the terms in the sequence to make two simultaneous equations, which we solve to find ' b ' and ' c '......
$T_{n}=a n^{2}+b n+c$

$T_{2}=(2)^{2}+b(2)+c=7$	$T_{3}=(3)^{2}+b(3)+c=12$
$\Rightarrow 4+2 b+c=7$	$\Rightarrow 9+3 b+c=12$
$\Rightarrow 2 b+c=3 \ldots .$. Eqn 1	$\Rightarrow 3 b+c=3 \ldots \ldots .$. Eqn 2

Step 4: Solving Equations 1 and 2 gives $b=0$ and $c=3$
$\Rightarrow T_{n}=n^{2}+(0) n+3$
$\Rightarrow T_{n}=n^{2}+3$

3) Geometric Sequences/Series:

a) Geometric Sequences:

Notes:

\rightarrow A sequence where each term is found by multiplying the previous term by the same number every time.

> The General Term for a Geometric sequence is:

where ' a ' is the first term and ' d ' is the common difference between the terms.
Example: i) Find the General Term for the sequence $3,8,13,18 \ldots$.
ii) Find the $50^{\text {th }}$ term, T_{50}

$$
\begin{array}{|l|l|}
\hline \text { i) } & \Rightarrow T_{n}=3+(n-1) 5 \\
& \Rightarrow T_{n}=3+5 n-5 \\
& \Rightarrow T_{n}=5 n-2
\end{array} \begin{aligned}
& \text { ii) } T_{n}=5 n-2 \\
& \Rightarrow T_{50}=5(50)-2 \\
&
\end{aligned} T_{50}=250-2=248
$$

b) Geometric Series:

Notes:

$>$ If we add the terms of an geometric sequence together, then we get a geometric series.
$>$ We need to be able to find the sum of the first n terms of such a series, which we can find using:

where ' a ' is the first term and ' r ' is the common ratio
Example: A geometric sequence is $3,12,48$.......
i) Find the $10^{\text {th }}$ term. ii) the sum of the first 10 terms.
i) Firstly, we will find the General Term:

- As $a=3$ and $r=4$, then

$$
T_{n}=a r^{n-1} \Rightarrow T_{n}=3\left(4^{n-1}\right)
$$

$>$ We can now find the $10^{\text {th }}$ term by filling in $n=10$:

$$
T_{10}=3\left(4^{10-1}\right)=3\left(4^{9}\right)=786432
$$

ii) First, we need to find S_{n} :

$$
S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{3\left(4^{n}-1\right)}{4-1}=\frac{3\left(4^{n}-1\right)}{3}=4^{n}-1
$$

$\Rightarrow S_{10}=4^{10}-1=1,048,575$

Notes:

> Sometimes a sequence can be approaching a particular number e.g. $1, \frac{1}{2}, \frac{1}{4} . . .$. . is a sequence that approaches 0 .
> If a sequence approaches a certain number L, as the number of terms increases, then we say the sequence is convergent.
> Written mathematically as:

$$
\lim _{n \rightarrow \infty} T_{n}=L
$$

> If the sequence doesn't approach any value, then the sequence is said to be divergent.
> Another very useful property of limits is:

Example: Evaluate $\lim _{n \rightarrow \infty} \frac{n^{2}}{3 n^{2}+n}$.
> To evaluate the limit, we begin by dividing all terms by the highest power of n.......in this case n^{2} :

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{n^{2}}{3 n^{2}+n}=\lim _{n \rightarrow \infty} \frac{\frac{n^{2}}{n^{2}}}{\frac{3 n^{2}}{n^{2}}+\frac{n}{n^{2}}} \\
=\lim _{n \rightarrow \infty} \frac{1}{3+\frac{1}{n}}
\end{gathered}
$$

> We can now use the property above to evaluate the limit:

$$
=\frac{1}{3+0}=\frac{1}{3}
$$

5) Infinite Series/Cubic Sequences:

a) Infinite Series:

Notes:

> Series where the terms of an infinite sequence are added up.
> Only infinite Geometric Series are on the course e.g. $3+9$ $+27+\ldots$

(for an infinite Geometric Series, where $|r|<1$)

Example: Sum to infinity of
the series $5+\frac{5}{6}+\frac{5}{36}+\cdots$?
> Geometric Series with a $=5$ and $r=\frac{1}{6}$
$S_{\infty}=\frac{a}{1-r}=\frac{5}{1-\frac{1}{6}}$
$=\frac{5}{\frac{5}{6}}$
$=6$

Example 2: Express 2.7777 in the form $\frac{a}{b}$.
> Decimal in the form of a series:
$2.777=2+0.7+0.07+0.007+$
$\cdots \quad$ Now isolate the part of the series after the '2': $2.777=2+(0.7+0.07+0.007+$...)
> Terms in brackets are an infinite geometric series with $a=0.7$ and r $=\frac{1}{10}$, so:
$\frac{a}{1-r}=\frac{0.7}{1-0.1}=\frac{0.7}{0.9}=\frac{7}{9}$
So, 2.777 is: $2+\frac{7}{9}=\frac{25}{9}$

b) Cubic Sequences:

Notes:

- A sequence where the third difference is the same every time.
E.g. $4,14,40,88,164$....... (see below)

