Q1 . A straight gangway, with equation	Q2. Show that the circle $x^2 + (y - 1)^2 = 16$ lies
x - y + 1 = 0, lies over a circular tank with	completely inside the circle $x^2 + y^2 - 2x - 35 = 0$.
equation $x^{2} + y^{2} - 2x + 2y - 3 = 0$. Calculate	
the length of the gangway that lies over	
the tank. Ans: $\sqrt{2}$	
Q3. The line $2x - y + 6 = 0$ intersects the	Q4 . The circle c has centre (5, -1). The line
circle $x^2 + y^2 - 2y - 9 = 0$ at the points A	I: 3x - 4y + 11 = 0 is a tangent to c. (i) Show that
and B. To construct an emblem, we must	the radius of c is 6. (ii) The line x + py + 1 = 0 is
draw a circle with [AB] as a diameter. Find	also a tangent to c. Find two possible values of p.
the equation of this circle.	Ans: (ii) $0 - \frac{12}{12}$
Ans : $(x + 2)^2 + (y - 2)^2 = 5$	35
Q5. In the diagram, the vellow circle	Q6. A disc c has centre (10, 5) and rests in a
represents a tray, and has equation	vertical plane on the x-axis as shown. A rod I with
$x^{2} + y^{2} - 4x - 6y + 5 = 0$. The green circle	one end fixed to the origin O rests against the
represents a plate sitting on the tray. The	disc the point of contact being A
areen circle has equation	
$x^{2} + y^{2} - 6x - 8y + 23 = 0$ Show by	
calculation (i) that the plate rests up	A
against the edge of the tray (ii) that	1
another plate of the same size could just	• (10,5)
be placed on the tray	
	(i) Find the equation of c
	(ii) By letting the slope of L be m and finding m
	determine the equation of I
	(iii) Find the coordinates of A
	Ans: (i) $x^2 + y^2 - 20x - 10y + 100 = 0$
	(ii) $4x - 3y = 0$ (iii) (6, 8)
O7 Find the values of $k \in \mathbb{R}$ for which the	$\mathbf{O8}$ Find the equation of the circle which has its
$\frac{\mathbf{v}_{1}}{\mathbf{v}_{1}}$ ind the values of KCR for which the line $\mathbf{v}_{1} + \mathbf{v}_{2} + \mathbf{k}_{1} = 0$ is a tangent to the circle	centre at the point $(-2, 1)$ and which has the line
$(x - 3)^2 + (y + 4)^2 = 50$	3x + y = 0 as a tangent
Ans: $3 - 17$	And: $(x + 2)^2 + (y - 1)^2 = 5$
	Aris: $(x + 2) + (y - 1) - \frac{1}{2}$
Q9. A disc c lies between two horizontal	Q10. A line containing the point p(5, 6) touches
planks, with equations $y = 2$ and $y = 12$. A	the circle $x^2 + y^2 - 4x - 4y + 4 = 0$ at k. Find pk .
metal bar with equation $x + 3y = 22$ is	Ans : √21
clamped to the centre of the disc, holding	<u>Q11.</u> Find the equation of the circle with centre
it in place. Find the equation of the disc.	(2, 3) and which touches the x-axis.
y = 12	Ans: $x^2 + y^2 - 4x - 6y + 4 = 0$.
	Q12. P: x ² + y ² + 2x - 2y - 23 = 0 and
c	Q: x ² + y ² - 14x - 2y + 41 = 0 are two circles. Prove
	P and Q touch externally.
	Q13. Find the equations of the tangents to the
x+3y=22	circle $x^2 + y^2 - 4x + 6y - 12 = 0$ that intersect at
y=2	the point (0, 8).
Ans: $(x - 1)^2 + (y - 7)^2 = 25$	Ans : 4x + 3y - 24 = 0, 24x - 7y + 56 = 0

Q14. Find the centre and the radius of each of the circles $x^2 + y^2 = 4$ and $x^2 + y^2 - 8x - 6y + 16 = 0$ and show that they touch externally. Write down the	Q15. Show that the line $3x + 4y - 5 = 0$ is a tangent to the circle $x^2 + y^2 - 6x - 8y + 9 = 0$. Q16. Find the equations of the tangents to the
equation of the common tangent to these circles. Ans: 4x + 3y - 10 = 0	circle x ² + y ² - 6x + 10y + 29 = 0 which are perpendicular to the line x - 2y + 5 = 0. Ans: 2x + y + 4 = 0 and 2x + y - 6 = 0
Q17. Points (1, -1), (-6, -2) and (3, -5) are on a circle c. Find the equation of c. Ans: x ² + y ² + 4x + 10y + 4 = 0.	Q18. Find the equation of the chord of the circle $x^2 + y^2 - 4x - 6y - 3 = 0$ which has (3, 5) as its midpoint. Ans: $x + 2y - 13 = 0$
Q19. (i) Find the equation of a circle which passes through $(1, 0)$ and $(0, 2)$ and which has its centre on the line $x + 3y - 11 = 0$. (ii) Prove the origin is outside the circle. Ans: (i) $x^2 + y^2 - 7x - 5y + 6 = 0$	Q20. The equation of a circle with radius length 7 is given by $x^2 + y^2 - 10kx + 6y + 60 = 0$. Find (i) the centre of the circle in terms of k and (ii) value of $k > 0$. Ans: (i) (5k, -3) (ii) $k = 2$
Q21. Find the equations of two circles which contain the points (2, 4) and (-6, 0) and that each have a radius of length $\sqrt{40}$. Ans: $x^2 + y^2 + 8x - 12y + 12 = 0$ and $x^2 + y^2 + 4y - 36 = 0$.	Q22. Find the equations of the tangents to the circle $x^2 + y^2 - 8x + 2y - 8 = 0$ and which are perpendicular to the line $3x - 4y + 1 = 0$. Ans: $4x + 3y + 12 = 0$, $4x + 3y - 38 = 0$
Q23. A circle has its centre in the first quadrant. The x-axis is a tangent to the circle at the point (3, 0). The y-axis cuts off a chord of length 8 units on this circle. Find the equation of the circle. Ans: $x^2 + y^2 - 6x - 10y + 9 = 0$	