Q1.
(i) Any question that yields text data that can't be ordered:
e.g. What is your favourite subject at school?
(ii) Any question that yields numerical data that doesn't have certain fixed values e.g. What is your height?

Q3.
Stratified Random Sample: The population is divided into two or more subgroups with similar characteristics and then a proportional sample is drawn from each subgroup. Would be a better choice than a simple random sample, if you wanted to see how opinions of particular sub-groups of the population vary.
Cluster Sample: The population is divided into clusters and then the clusters are selected randomly. This method might be cheaper than a simple random sample as the surveyor can just travel to the clusters to gather data rather than all over the country.
Q5.
(i) Mean Age
$=\frac{51+47+53+33+39+46+42+48+28+36}{10}=42.3$
(ii) Mean Age
$=\frac{7.3+9.5+6+11.1+10.4+8.5+9.7+7.4+11.5+11.6}{10}=$
9.3
(iii)

Q2. Any two of:

- Sample needs to be large enough
- Sample needs to be randomly selected
- Sample needs to be representative of the population

Q4.

(a)

- Use clear and simple language
- Avoid personal questions
- Start with simpler questions at the start
- Allow for all possible responses
- Be clear where answers should be recorded
- No leading questions
(b)

Advantages: Any one of: (i) Cheap (ii) responses can be anonymous => more honest answers Disadvantages: Any one of: (i) Questions can't be explained to the respondent (ii) People don't always reply (iii) sample is biased as only people online surveyed
(iv) Strong negative correlation
(v) (vi)

Age (X) Vs Weight (Y)

(vii) (a) From diagram above, expected weight of a 75 -year old coin would be: 1.9 g
(b) The expected age of a coin with a weight of 13.7 g would be: 23 years
(viii) Not particularly reliable as our line of best fit is based on a very small amount of data (10 coins only) and the two values in the previous question are not even within the range of coin weights in the data. Would need a larger sample size if we wanted increased reliability.
(ix) $r=-0.9252$. This fits with the answer to part (iv) as it is a correlation coefficient showing strong negative correlation.

Qb.
(i) No. of values

$$
=24+16+42+40+12=134
$$

To find the median, we add 1 to 134 and then divide by 2 :

$$
=\frac{134+1}{2}=67.5
$$

\Rightarrow Median is average of $67^{\text {th }}$ and $68^{\text {th }}$ values The first 24 values are in 0-20 range. The next 16 values are in 20-40 range and the next 42 values are in the 40-60 rang \Rightarrow the $67^{\text {th }}$ and $68^{\text {th }}$ values would be in the 4060 range
=> Ans: 40-60 range
(ii) Mid-interval values are 10, 30,50, 70, 90 \Rightarrow Total paid out $=$

$$
\begin{gathered}
(10 \times 24)+(30 \times 16)+(50 \times 42)+(70 \times 40) \\
+(90 \times 12)
\end{gathered}
$$

$=6700$ but these are $€ 1000$ s of euro
\Rightarrow amount paid out $=€ 6,700,000$
iv) Mean $A=\frac{15+17+\cdots \cdot 42}{12}=27.2$
mean $B=\frac{14+18+\cdots \cdot 47}{12}=28-2$

Mean of B is slightly higher than A which contradicts what the median told us. One person is grape B got 47 out of 50, which compared to the highest value in gray A, wald pull the near up a bit higher then A.
\therefore TOR as A: Median $=6.5^{\text {th }}$ Value
Lower Quartile:
Median of lower 6 values

$$
\begin{aligned}
& =\frac{6+1}{2}=3.5^{\text {th }} \text { Value }= \\
& =\frac{20+23}{2}=21.5
\end{aligned}
$$

Upper Quartile:
Median of upper 6 values

$$
\begin{aligned}
& =3.5^{\text {th }} \text { Value }=\frac{31+33}{2}=32 \\
& \Rightarrow I Q R=32-21.5=10.5
\end{aligned}
$$

Key: $d_{2}=20 \quad$ Key: $31_{1}=31$
ii)

$$
\begin{aligned}
\text { Rage } A & =M_{\text {ax }}-M_{\text {in }} \\
& =42-15=27
\end{aligned}
$$

Range $B=M_{\text {ax }}-M_{i i}$

$$
=47-14=33
$$

$\Rightarrow A$ has greater range.
iii) 12 values \Rightarrow Median $=\frac{12+1}{2}=6.5$
\Rightarrow average of $6^{\text {th }} \& 7^{\text {th }}$ values
Median $A=\frac{27+27}{2}=27$
Median $B=\frac{22+26}{2}=24$
Median of A slightly higher then B which suggests A perf-ned slightly better.
$I Q R$ of B

$$
\begin{aligned}
Q_{1} & =\frac{19+20}{2}=19.5 \\
Q_{3} & =\frac{35+39}{2}=37 \\
\Rightarrow I Q R & =37-19.5 \\
& =17.5
\end{aligned}
$$

The higher IQR for B means the data in B is more widely spread about its centre than A.
vi) Easiest to use calculator as in handout but if doing by hand:
Mean of $A=27.2$
\Rightarrow Std der

$$
\begin{aligned}
& =\sqrt{\frac{(31-27.2)^{2}+(17-27.2)^{2}+\cdots(33-27.2)^{2}}{12}} \\
& =7.7
\end{aligned}
$$

Similarly, std dew for B is

$$
10.6
$$

As with the IQR, the std der of B is higher than that of A, which nears all the data is more spread out in B than in A.

Q8.
i) 13 students scored less than. Sarah's 71
$\Rightarrow 13 / 20=65 \%$ means she is in the $65^{\text {th }}$ percentile P_{55}
ii) 20 values

$$
\begin{aligned}
& \Rightarrow 35 \% \text { of }(20+1)=7.35 \\
& \Rightarrow \text { Mean of } 7^{\text {th }} \& 8^{\text {h }} \text { values } \\
& =\frac{57+58}{2}=57.5
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
P_{78} & \Rightarrow 78 \% \text { of }(20+1) \\
& =16.38
\end{aligned}
$$

\Rightarrow Mean of $16^{\text {th }} \& 17^{\text {th }}$ values

$$
=\frac{76+79}{2}=77.5
$$

Quo.

i) Between 58 and $79=68 \%+13.5 \%$

$$
=81.5 \%
$$

ii) Between 65 and $72=\frac{68 \%}{2}=34 \%$

$$
\Rightarrow 34 \% \text { of } 1000=340
$$

Q9. i) By hand:

x	f				
Leigh	number	$x 8$	d^{\prime}	d^{2}	$d^{2} f$
5	4	20	-20	400	1600
15	16	240	-10	100	1600
25	20	500	0	0	20
35	12	420	10	100	1200
45	6	270	20	400	2400
	58	1450			6820

$$
\text { Mean }=\frac{1450}{58}=25 \mathrm{~cm}=\bar{x}
$$

$$
S_{t d} d e v=\sqrt{\frac{6820}{58}}=10.8
$$

ii) By calculator:

See handout from class for steps.

