Q1. Area/Volume - The Basics (2 ${ }^{\text {nd }}$ Year Perimeter/Area/Volume - Unit 3)

a) Find the area and perimeter of the following shapes. Make sure and include the correct units. Use $\pi=3.14$ where necessary.

b) Find the area and perimeter of the following shapes. Make sure and include the correct units. Use $\pi=3.14$ where necessary.

(ii)

(iii)

(iv)

c) The area of a parallelogram is equal to $52 \mathrm{~m}^{2}$. If the length of the base is 13 m , calculate it's perpendicular height.
d) Find the area of the sector shown on the right. Take $\pi=\frac{22}{7}$.

e) Draw the net for a cuboid of length 8 cm , width 6 cm and height 3 cm .
f) A box in the shape of a cuboid has dimensions $20 \mathrm{~cm}, 30 \mathrm{~cm}$ and 18 cm . Calculate the volume of the box in litres.
g) A map has a scale of 1:500000. If the distance between two towns on a map is 3.4 cm . What is the actual distance between the towns?
h) Calculate the volume and the total surface area of a cylinder of height 7 m and radius $2 m$ in terms of π.
i) Find the volume and surface area of a sphere of radius 5 cm . Take $\pi=3.14$.
j) Find the volume and total surface area of a cone of vertical height 9 cm and diameter 4 cm . Take $\pi=3.14$.
k) The surface area of a sphere is $36 \pi \mathrm{~cm}^{2}$. Find the volume of the sphere in terms of π.

Q2. Area/Volume - A bit trickier
a) i) Find the volume of a cube of side length 8 cm .
ii) If 5 of the cubes are stacked on top of each other, what is the volume of the shape?
iii) Calculate the exposed surface area including the base.
iv) A manufacturer wants to distribute the shapes in boxes of 12. Draw a sketch of a possible box that could be used showing its dimensions.

b) Rain is collected in a rectangular container of length 88 cm , width 42 cm and height 6 cm . When the container is full, it is poured into an empty cylinder of radius 21 cm . The depth of the water in the cylinder is $h \mathrm{~cm}$. Find the value of h. Use $\pi=\frac{22}{7}$.
c) A cylindrical metal pipe has an external diameter of 6 m and an internal diameter of 4 m . The pipe is 1 m long. Taking $\pi=3.14$, find
i) the volume of the pipe in m^{3}
ii) the mass of the pipe, in kg , if $1 \mathrm{~m}^{3}$ of the metal has a mass of 9 kg .
d) A sphere of radius 8 cm has the same volume as a cylinder of height 12 cm . Find the length of the radius. Write your answer in the form $\frac{a \sqrt{2}}{3}$.
e) Three tennis balls of radius 3 cm fit exactly into a cylindrical can. Find, in terms of π, the volume of the can not occupied by the balls.
f) Nine solid metal spheres, each of radius 1.5 cm , are dropped into a cylinder partly filled with water. If the spheres are totally immersed, find the increase in the height of the water if the radius of the cylinder is 3 cm .
g) The volume of a cone is $\frac{512 \pi}{3} \mathrm{~cm}^{3}$. The height of the cone and its radius are equal. Find the length of the radius.
Q3. Extra Challenge and Problem Solving
a) John has twelve square tiles of side length 10 cm . The tiles must be laid edge-toedge.
i) How can John arrange the twelve tiles so that the resulting shape has the greatest possible perimeter?
ii) How can John arrange the twelve tiles so that the resulting shape has the smallest possible perimeter?
b) Meabh has a counter device on her bike which counts the number of revolutions her wheel has made. Her wheels are 40 cm in diameter.
i) Meabh cycles to her grandmother's house. The counter reads 1989. How far away does her grandmother live?
ii) How many revolutions does her wheel have to make to travel 1km? Give both your answers correct to the nearest whole number.
c) A window wiper on a car is 15 cm long and can rotate through an angle of 170°. Calculate how much of a windscreen the wiper can clean, correct to two decimal places.
d) i) Find the area of an equilateral triangle of side length 6 cm .
ii) A hexagon is made up of 6 equilateral
 triangles as shown. Calculate the area of the hexagon.
iii) Now calculate the volume of the hexagonal prism shown on the right.
iv) Calculate the surface area of the prism

e) i) Calculate the angle of rotation when the big hand on a clock moves from the 12 to the 5 .
ii) How far along the outer edge of the clock does the hand trace out moving from 12 to 5 , if the hand is 4 cm long?
f) The large circle has an area of $132.67 \mathrm{~cm}^{2}$. What is the area of the shaded region? Use $\pi=3.14$ where necessary.
Write down any assumptions you are making before carrying out your calculations.

g) The height of a cylinder is equal to the length of its diameter. The curved surface area of the cylinder is $100 \pi \mathrm{~cm}^{2}$. Calculate the height.
h) A shape is made by joining a hemisphere of radius r to a cone of radius r. The height of the cone is $2 r$. Find an expression, in terms of r and π, for the volume of the shape.
i) i) Calculate the volume of a cylinder of height 7 cm and radius 2 cm , correct to the nearest cm^{3}.
ii) Water flows through the pipe of internal radius 2 cm at a rate of $7 \mathrm{~cm}^{3} / \mathrm{sec}$ into an empty rectangular tank that is 1.2 m long, 1.1 m wide and 30 cm high. How long, in minutes, will it take to fill the tank?

Revision Sheet 6 Solutions:

Q1.
a) i) Area $=40 \mathrm{~cm}^{2}$, Perimeter $=26 \mathrm{~cm}$
ii) Area $=24 \mathrm{~cm}^{2}$, Perimeter $=24 \mathrm{~cm}$
iii) Area $=12.56 \mathrm{~cm}^{2}$, Perimeter $=12.56 \mathrm{~cm}$
iv) Area $=50 \mathrm{~cm}^{2}$, Perimeter $=28 \mathrm{~cm}$
b) i) Area $=94 \mathrm{~m}^{2}$, Perimeter $=48 \mathrm{~m}$
ii) Area $=36 \mathrm{~cm}^{2}$, Perimeter $=31.66 \mathrm{~cm}$
iii) Area $=66 \mathrm{~m}^{2}$, Perimeter $=36.52 \mathrm{~m}$
iv) Area $=56.13 \mathrm{~m}^{2}$, Perimeter $=29.42 \mathrm{~m}$
c) Height $=4 \mathrm{~m}$
d) Area $=77 \mathrm{~m}^{2}$
e)

f) 10.8 litres
g) 17 km
h) Volume $=28 \pi \mathrm{~m}^{3}, \mathrm{TSA}=36 \pi \mathrm{~m}^{2}$
i) Volume $=523.3 \mathrm{~cm}^{3}, \mathrm{SA}=314 \mathrm{~cm}^{2} \quad$ j) Volume $=37.68 \mathrm{~cm}^{3}, \mathrm{TSA}=70.46 \mathrm{~cm}^{2}$
k) Volume $=36 \pi \mathrm{~cm}^{3}$

Q2.
a) i) Volume $=512 \mathrm{~cm}^{3}$
ii) Volume $=2560 \mathrm{~cm}^{3}$
iii) Surface Area $=1664 \mathrm{~cm}^{2}$
iv)

For 4×3
arrangement

For 6×2
arrangement

For 12×1
arrangement
b) $h=16 \mathrm{~cm}$
c) i) Volume $=15.7 \mathrm{~m}^{3}$
ii) Mass $=141.3 \mathrm{~kg}$
d) Radius $=\frac{16 \sqrt{2}}{3} \mathrm{~cm}$
e) Volume $=54 \pi \mathrm{~cm}^{3}$
f) Height $=4.5 \mathrm{~cm}$
g) Radius $=8 \mathrm{~cm}$

Q3.
a) i)

Greatest Perimeter $=260 \mathrm{~cm}$
ii)

Smallest Perimeter $=140 \mathrm{~cm}$
b) i) 2.5 km
ii) 796 revolutions
c) $333.63 \mathrm{~cm}^{2}$
d) i) $15.59 \mathrm{~cm}^{2}$
ii) $93.54 \mathrm{~cm}^{2}$
iii) $1590.18 \mathrm{~cm}^{3}$
iv) $799.08 \mathrm{~cm}^{2}$
e) i) 150°
ii) 10.47 cm
f) $66.33 \mathrm{~cm}^{2}$ (Assuming the two smaller circles are the exact same size, and the dotted line shown is the diameter of the larger circle)
g) Height $=5 \mathrm{~cm}$
h) Volume $=\frac{4}{3} \pi r^{3}$
i) i) Volume $=88 \mathrm{~cm}^{3}$
ii) 75 mins

