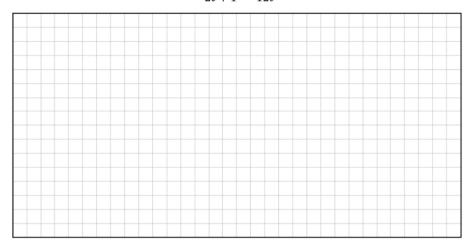
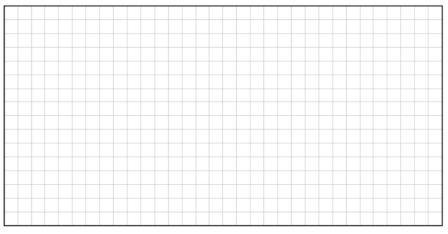

Question 6


(a) $h(x) = x^2 + bx - 12$, where $x \in \mathbb{R}$ and b is a constant.

Find the value of b for which x - 4 is a factor of h(x).

(b) Write the following expression as a single fraction in terms of t:

$$\frac{4}{2t+1}-\frac{7}{12t}$$

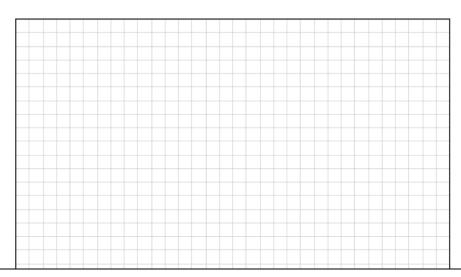


(30 marks) Question

Question 1 (30 marks)

(a) Solve the following equation for $n \in \mathbb{N}$:

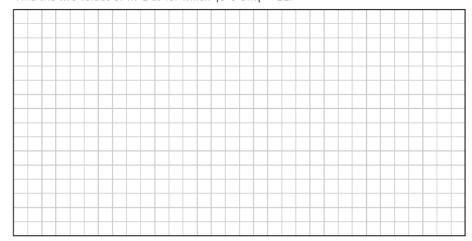
$$n-3=\sqrt{3n+1}$$



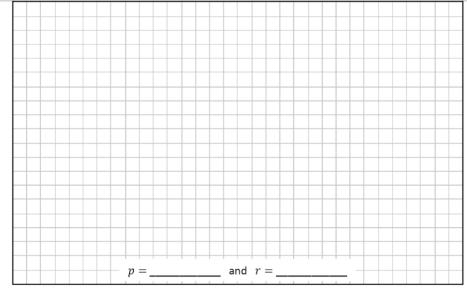
(c) Solve the following simultaneous equations for $x, y, w \in \mathbb{Z}$:

$$x + 2y = 143$$

$$y + 3w = -74$$

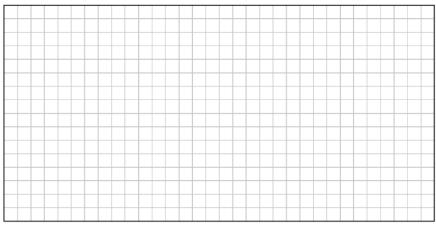

$$4x + 5w = 4$$

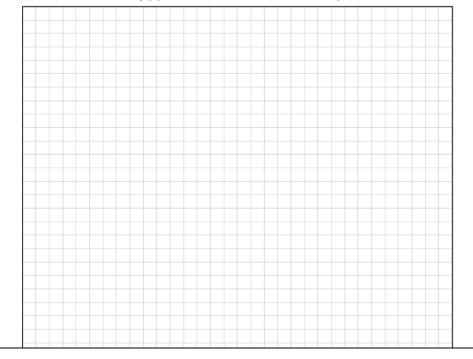
Question 1


(30 marks)

(a) Find the two values of $m \in \mathbb{R}$ for which |5 + 3m| = 11.

(c) $x^2 - px + 1$ is a factor of $x^3 - 2x - 3r$, where $p, r \in \mathbb{R}$ and p < 0.

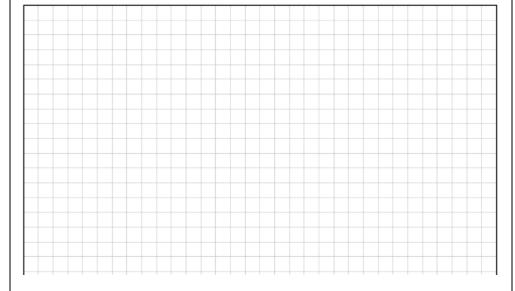

Find the value of p and the value of r.


(b) For the real numbers h, j, and k:

$$\frac{1}{h} = \frac{k}{j+k}$$

Express k in terms of h and j.

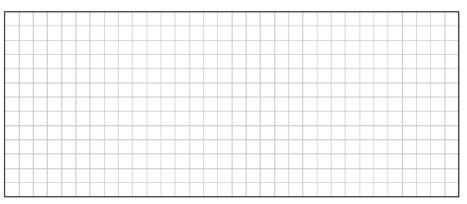
- **(b)** $f(x) = 2x^3 21x^2 + 40x + 63$, where $x \in \mathbb{R}$.
 - (i) x + 1 is a factor of f(x). Find the three values of x for which f(x) = 0.


(ii) The areas of the three regions **K**, **L**, and **N** give the following three equations (including the equation from part (b)(i)):

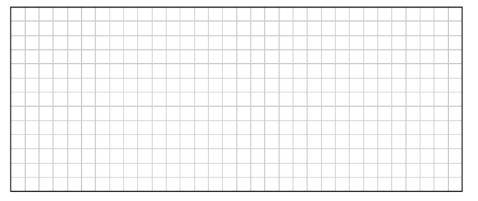
$$4a + 3b + 3c = 807$$

$$28a + 9b + 3c = 879$$

$$76a + 15b + 3c = 663$$


Solve these equations to find the values of a, b, and c.

Question 1 (30 marks)


(a) Find the two values of $m \in \mathbb{Z}$ for which the following equation in x has exactly **one** solution:

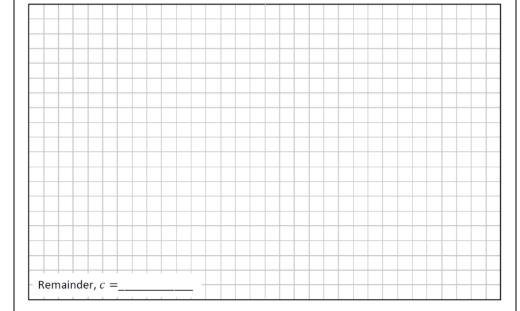
$$3x^2 - mx + 3 = 0$$



(b) Explain why the following equation in x has **no** real solutions:

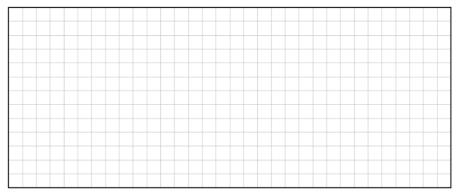
$$(2x+3)^2 + 7 = 0$$

(c) (i) Show that x = -1 is **not** a solution of $3x^2 + 2x + 5 = 0$.



(ii) Find the **remainder** when $3x^2 + 2x + 5$ is divided by x + 1.

That is, find the value of c when $3x^2 + 2x + 5$ is written in the form

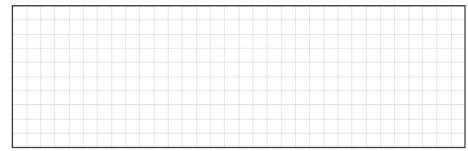

$$3x^2 + 2x + 5 = (x+1)(ax+b) + c$$

where $a, b, c \in \mathbb{Z}$.

Question 2 (30 marks)

(a) Given that x=-3 is a solution to |x+p|=5, find the two values of p, where $p\in\mathbb{Z}$.

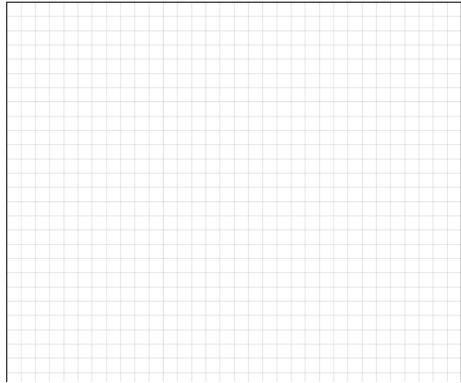
(b) (x+4) is a factor of $f(x)=x^3+qx^2-22x+56$, where $x\in\mathbb{R}$ and $q\in\mathbb{Z}$. Show that q=-5, and find the three roots of f(x).


Show:							\exists
				-	-	-	-
				-	+		-
				++			-
							\top
							_
							_
							+
							\exists
							\top

Question 1

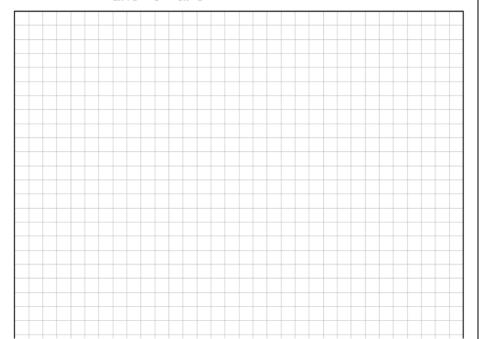
(25 marks)

(a) $f(x) = x^2 + 5x + p$ where $x \in \mathbb{R}$, $-3 \le p \le 8$, and $p \in \mathbb{Z}$.

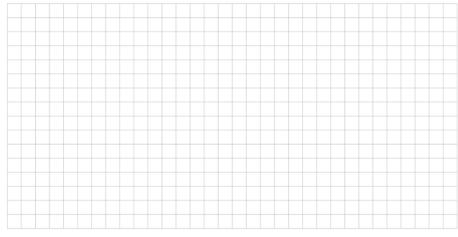

(i) Find the value of p for which x + 3 is a factor of f(x).

(ii) Find the value of p for which f(x) has roots which differ by 3.

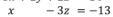
(b) Find the range of values of x for which $|2x + 5| - 1 \le 0$, where $x \in \mathbb{R}$.



Question 3 (25 marks)


(a) Factorise fully: 3xy - 9x + 4y - 12.

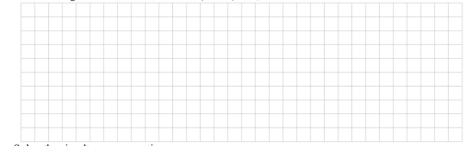
(b) Solve the equation $\frac{3}{2x+1} + \frac{2}{5} = \frac{2}{3x-1}$ where $x \neq -\frac{1}{2}, \frac{1}{3}$, and $x \in \mathbb{R}$.


(b) Solve the inequality $\frac{2x-3}{x+2} \ge 3$, where $x \in \mathbb{R}$ and $x \ne -2$.

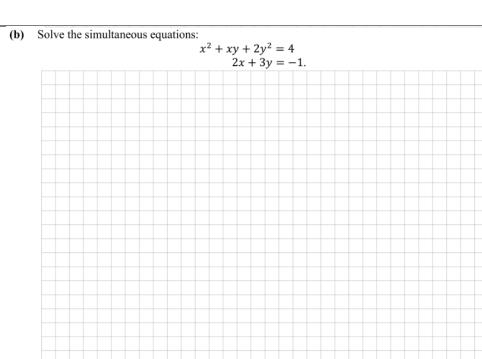
Question 1

(a) Solve the simultaneous equations.

$$2x + 3y - z = -4$$
$$3x + 2y + 2z = 14$$



(25 marks)



Question 2 (25 marks)

(a) Find the range of values of x for which $|x-4| \ge 2$, where $x \in \mathbb{R}$.

$$x^2 + xy + 2y^2 = 4$$
$$2x + 3y = -1$$

Question 2 (25 marks)

(a) Find the set of all real values of x for which $2x^2 + x - 15 \ge 0$.

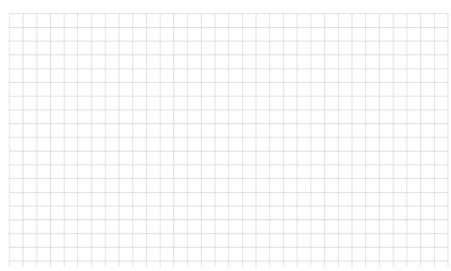
Question 5 (25 marks)

(a) Solve the equation $x = \sqrt{x+6}$, $x \in \mathbb{R}$.

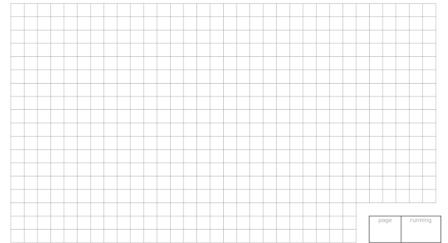
Question 2 (25 marks)

Solve the equation $x^3 - 3x^2 - 9x + 11 = 0$.

Write any irrational solution in the form $a+b\sqrt{c}$, where $a,b,c\in\mathbb{Z}$.



(b) Solve the simultaneous equations;


$$x + y + z = 16$$

$$\frac{5}{2}x + y + 10z = 4$$

$$\frac{5}{2}x + y + 10z = 40$$
$$2x + \frac{1}{2}y + 4z = 21.$$

(b) Find the set of all real values of x for which $\frac{2x-5}{x-3} \le \frac{5}{2}$.

(25 marks) Question 1

(a) Solve the simultaneous equations:

$$a^2 - ab + b^2 = 3$$
$$a + 2b + 1 = 0$$

(c) Solve the equation $x^2 - 2\sqrt{3}x - 9 = 0$, giving your answers in the form $a\sqrt{3}$, where $a \in \mathbb{Q}$.

