a) Proof by contradiction that $\sqrt{2}$ is irrational:

Assume $\sqrt{2}$ is not irrational $=>\sqrt{2}$ can be written in the form $\frac{a}{b}$
$\Rightarrow \sqrt{2}=\frac{a}{b}$ (where a and b have no common factor)
$\Rightarrow 2=\frac{a^{2}}{b^{2}}$
$\Rightarrow 2 b^{2}=a^{2}$
As $2 b^{2}$ is an even number $\Rightarrow a^{2}$ must be even
$\Rightarrow{ }^{\prime} a^{\prime}$ ' can be written in the form $2 k$
$\Rightarrow 2 b^{2}=(2 k)^{2}$
$\Rightarrow 2 b^{2}=4 k^{2}$
$\Rightarrow b^{2}=2 k^{2}$, which means b is even as well.
If ' a ' and ' b ' are even, then 2 must divide into both \Rightarrow Contradiction $\Rightarrow \sqrt{2}$ is irrational
b) Example of Proof by Contradiction in Geometry:
> Assume opposite is true and prove that the opposite is impossible.
To prove: An equilateral triangle is also an acute-angled triangle (i.e. has no angle bigger than 90°)
Proof:

- Assume the opposite is true i.e. equilateral triangle is NOT right-angled
=> it has one angle bigger than 90°
- As triangle is equilateral, al angles are equal
\Rightarrow it has 3 angles bigger than 90°
But......
Sum of 3 angles in a triangle is 180°, so this is impossible.
d) Proof of DeMoivre's Theorem by Induction:

To Prove: $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$.

Step 1: Prove proposition is true for smallest value of n :

$$
(\cos \theta+i \sin \theta)^{1}=\cos 1(\theta)+i \sin 1(\theta), \text { which is true. }
$$

Step 2: Assume proposition is true for $\mathrm{n}=\mathrm{k}$:

$$
(\cos \theta+i \sin \theta)^{k}=\cos k \theta+i \sin k \theta
$$

Step 3: Show proposition is true for $\mathrm{n}=\mathrm{k}+1$:

$$
(\cos \theta+i \sin \theta)^{k+1}=\cos (k+1) \theta+i \sin (k+1) \theta
$$

LHS:

$$
\begin{aligned}
& (\cos \theta+i \sin \theta)^{k+1}=(\cos \theta+i \sin \theta)^{k} \cdot(\cos \theta+i \sin \theta)^{1} \\
& =(\cos k \theta+i \sin k \theta) \cdot(\cos \theta+i \sin \theta) \quad \text { (using } \mathrm{P}(\mathrm{k})) \\
& =\cos k \theta \cos \theta+\cos k \theta i \sin \theta+i \sin k \theta \cos \theta+i^{2} \sin \theta \sin k \theta \quad \text { (multiplying out) } \\
& =(\cos k \theta \cos \theta-\sin \theta \sin k \theta)+i[\cos k \theta \sin \theta+\cos \theta \sin k \theta] \quad \text { (put real and imag parts together) } \\
& =(\cos (k \theta+\theta)+i \sin (k \theta+\theta) \quad \quad(\text { as } \cos (A+B)=\cos A \cos B-\sin A \sin B \text { and } \sin (A+B)=\cos A \sin B+\sin A \cos B) \\
& =(\cos (k+1) \theta+i \sin (k+1) \theta), \text { which is = RHS above. } \\
& =P P(k+1) \text { is true, if } P(k) i \text { is true } \\
& =>P(n) \text { is true } \forall n \in N . \quad \text { Q.E.D. }
\end{aligned}
$$

e) Derivation of Amortisation Formula:

Proof:

- Let $P=$ the amount borrowed, $A=$ the repayment amount, $t=$ the time period of repayment and $\mathrm{i}=$ the interest rate.
- The amount borrowed has to be equal to the present value of all the repayments:

$$
\Rightarrow P=\frac{A}{(1+i)^{1}}+\frac{A}{(1+i)^{2}}+\frac{A}{(1+i)^{3}}+\cdots+\frac{A}{(1+i)^{t}}
$$

- A Geometric Series with $a=\frac{A}{(1+i)}$ and $r=\frac{1}{(1+i)}$, so:

$$
\begin{aligned}
\Rightarrow P= & \frac{\frac{A}{(1+i)}\left(1-\left(\frac{1}{(1+i)}\right)^{t}\right)}{1-\frac{1}{(1+i)}} \quad\left(\text { Using Sn formula } \frac{a\left(1-r^{n}\right)}{1-r}\right) \\
& \Rightarrow P=\frac{\left(\frac{A}{(1+i)}\right)\left(1-\frac{1^{t}}{(1+i)^{t}}\right)}{1-\frac{1}{(1+i)}} \\
& \Rightarrow P=\frac{\left(\frac{A}{(1+i)}\right)\left(1-\frac{{ }_{1} t}{(1+i)^{t}}\right)}{\frac{1(1+i)-1}{(1+i)}} \\
& \Rightarrow P=\frac{\left(\frac{A}{(1+i)}\right)\left(\frac{1(1+i)^{t}-1}{(1+i)^{t}}\right)}{\frac{i}{(1+i)}} \\
& \Rightarrow P=\left(\frac{A}{(1+i)}\right)\left(\frac{(1+i)^{t}-1}{(1+i)^{t}}\right) \times \frac{(1+i)}{i} \\
& \Rightarrow P=\left(\frac{A}{(1+i)}\right)\left(\frac{(1+i)^{t}-1}{(1+i)^{t}}\right) \times \frac{(1+i)}{i} \\
& \Rightarrow P=(A)\left(\frac{(1+i)^{t}-1}{i(1+i)^{t}}\right) \\
& \Rightarrow A=\frac{P\left(i(1+i)^{t}\right)}{(1+i)^{t}-1}
\end{aligned}
$$

g) Theorem 12:

Theorem 12: Let ABC be a triangle. If a line XY is parallel to BC and cuts $[\mathrm{AB}]$ in the ratio $\mathrm{s}: \mathrm{t}$, then it also cuts $[\mathrm{AC}]$ in the same ratio.

Diagram:

Given: The triangle ABC with XY parallel to BC .
To Prove: $\frac{|\mathrm{AX}|}{|\mathrm{XB}|}=\frac{|\mathrm{AY}|}{|\mathrm{YC}|}$

Construction: Divide $[\mathrm{AX}]$ into s equal parts and $[\mathrm{XB}]$ into t equal parts.
Draw a line parallel to BC through each point of division.

The parallel lines make intercepts of equal length along the line [AC] (From Theoerem 11)
$\Rightarrow \quad[\mathrm{AY}]$ is divided into s equal intercepts and $[\mathrm{YC}]$ is divided into t equal intercepts.
$\Rightarrow \quad \frac{|\mathrm{AY}|}{|\mathrm{YC}|}=\frac{\mathrm{s}}{\mathrm{t}}$

But $\frac{|\mathrm{AX}|}{|\mathrm{XB}|}=\frac{\mathrm{s}}{\mathrm{t}}$
$\Rightarrow \frac{|\mathrm{AX}|}{|\mathrm{XB}|}=\frac{|\mathrm{AY}|}{|\mathrm{YC}|}$
Q.E.D.

f) Theorem 11:

Theorem 11: If three parallel lines cut off equal segments on some transversal line, then they will cut off equal segments on any other transversal.

Diagram:

Given: Three parallel lines $1, \mathrm{~m}$ and n , intersecting the transversal t at the points A, B and C such that $|A B|=|B C|$. Another transversal k intersects the lines at D, E and F.

To Prove: $|\mathrm{DE}|=|\mathrm{EF}|$
Construction: Through E, construct a line parallel to t and intersecting 1 at the point P and n at the point Q

Proof: PEBA and EQCB are parallelograms (from construction)
$\Rightarrow|\mathrm{PE}|=|\mathrm{AB}|$ and $|\mathrm{EQ}|=|\mathrm{BC}|$ (opposite sides of a parallelogram)
But $|\mathrm{AB}|=|\mathrm{BC}|$ (Given)
So $=>|P E|=|E Q|$.
Consider now $\triangle \mathrm{DEP}$ and $\triangle \mathrm{FEQ}$:
$|\mathrm{PE}|=|\mathrm{EQ}| \quad$ (from above)
$|\angle \mathrm{PED}|=|\angle \mathrm{FEQ}| \quad$ (Vertically opposite angles)
$|\angle \mathrm{DPE}|=|\angle \mathrm{FQE}| \quad$ (Alternate angles)
$\Rightarrow \triangle \mathrm{DEP}$ and $\triangle \mathrm{FEQ}$ are congruent (ASA)
$\Rightarrow|\mathrm{DE}|=|\mathrm{EF}|$.
Q.E.D

h) Theorem 13

Theorem 13: If two triangles ABC and DEF are similar, then their sides are proportional in order.
Diagram:

Given: \quad Similar triangles ABC and DEF
To prove: $\frac{|\mathrm{AB}|}{|\mathrm{DE}|}=\frac{|\mathrm{BC}|}{|\mathrm{EF}|}=\frac{|\mathrm{AC}|}{|\mathrm{DF}|}$
Construction: \quad Mark the point X on $[\mathrm{AB}]$ such that $|\mathrm{AX}|=|\mathrm{DE}|$.
Mark the point Y on $[\mathrm{AC}]$ such that $|\mathrm{AY}|=|\mathrm{DF}|$.
Join XY.
Proof: $\triangle \mathrm{AXY}$ and $\triangle \mathrm{DEF}$ are congruent. (SAS)

$$
\begin{align*}
& \Rightarrow \quad|\angle \mathrm{AXY}|=|\angle \mathrm{DEF}|=|\angle 5| \quad \text { (Corresponding angles) } \\
& \Rightarrow \quad \angle \mathrm{AXY}|=|\angle \mathrm{ABC}| \quad \text { (as triangles } \mathrm{ABC} \text { and DEF are similar) } \\
& \Rightarrow \quad \mathrm{XY} \| \mathrm{BC} \quad \text { (as angles } 2 \text { and } 5 \text { are corresponding) } \\
& \Rightarrow \quad \frac{|\mathrm{AB}|}{|\mathrm{AX}|}=\frac{|\mathrm{AC}|}{|\mathrm{AY}|} \quad \text { (A line parallel to one side divides other side in the } \\
& \text { same ratio....Theorem 12) } \\
& \Rightarrow \quad \frac{|\mathrm{AB}|}{\mathrm{DE} \mid}=\frac{|\mathrm{AC}|}{\mathrm{DF} \mid} \\
& \text { Similarly, it can be proven that } \frac{|\mathrm{AB}|}{|\mathrm{DE}|}=\frac{|\mathrm{BC}|}{|\mathrm{EF}|} \\
& \Rightarrow \quad \frac{|\mathrm{AB}|}{|\mathrm{DE}|}=\frac{|\mathrm{BC}|}{|\mathrm{EF}|}=\frac{|\mathrm{AC}|}{|\mathrm{DF}|}
\end{align*}
$$

i) Proof of Trig Identities:

1) To prove: $\cos ^{2} A+\sin ^{2} A=1$

Using Pythagoras Theorem:

$$
\begin{aligned}
& (\cos A)^{2}+(\sin A)^{2}=(1)^{2} \\
& \Rightarrow \cos ^{2} A+\sin ^{2} A=1
\end{aligned}
$$

2) To prove: $\boldsymbol{\operatorname { c o s }}(A-B)=\boldsymbol{\operatorname { c o s }} A \boldsymbol{\operatorname { c o s }} B+\boldsymbol{\operatorname { s i n }} A \boldsymbol{\operatorname { s i n }} B$

Let $P(\cos A, \sin A)$ and $Q(\cos B, \sin B)$ be two points on a unit circle.
Using distance formula:

$$
|P Q|=\sqrt{(\cos A-\cos B)^{2}+(\sin A-\sin B)^{2}}
$$

$|P Q|^{2}=\cos ^{2} A+\cos ^{2} B-2 \cos A \cos B+\sin ^{2} A+\sin ^{2} B-2 \sin A \sin B$

$$
=\left(\cos ^{2} A+\sin ^{2} A\right)+\left(\cos ^{2} B+\sin ^{2} B\right)-2(\cos A \cos B+\sin A \sin B)
$$

$$
=1+1-2(\cos A \cos B+\sin A \sin B)
$$

$$
=2-2(\cos A \cos B+\sin A \sin B)
$$

Using Cosine Rule to find $|P Q|$ instead:

$$
\begin{aligned}
& |P Q|^{2}=(1)^{2}+(1)^{2}-2(1)(1) \cos (A-B) \\
\Rightarrow & |P Q|^{2}=2-2 \cos (A-B)
\end{aligned}
$$

Equating the two expressions for $|P Q|^{2}$:

$$
\begin{aligned}
& 2-2 \cos (A-B)=2-2(\cos A \cos B+\sin A \sin B) \\
& \Rightarrow-2 \cos (A-B)=-2(\cos A \cos B+\sin A \sin B) \\
& \Rightarrow \cos (A-B)=\cos A \cos B+\sin A \sin B
\end{aligned}
$$

3) To prove: $\boldsymbol{\operatorname { c o s }}(A+B)=\cos A \cos B-\sin A \sin B$

We know from (2) that:

$$
\cos (A-B)=\cos A \cos B+\sin A \sin B
$$

If we fill in $-B$ instead of B :

$$
\begin{aligned}
& \cos (A-(-B))=\cos A \cos (-B)+\sin A \sin (-B) \\
& \Rightarrow \cos (A+B)=\cos A \cos (-B)-\sin A \sin (-B)
\end{aligned}
$$

Since $\cos (-B)=\cos (B)$ and $\sin (-B)=-\sin (B)$
$\Rightarrow \cos (A+B)=\cos A \cos B+\sin A \sin B$
4) To prove: $\sin (A+B)=\sin A \cos B+\cos A \sin B$

We know from (2) that $\cos (A-B)=\cos A \cos B+\sin A \sin B$
If we fill in $90-A$ instead of A, we get:

$$
\cos ((90-A)-B)=\cos (90-A) \cos B+\sin (90-A) \sin B
$$

From the diagram on the right:

$\sin (90-A)=\frac{x}{y}=\cos A$
$\cos (90-A)=\frac{z}{y}=\sin A$

$$
\begin{aligned}
& \Rightarrow \cos ((90-A)-B)=\sin A \cos B+\cos A \sin B \\
& \Rightarrow \cos (90-(A+B))=\sin A \cos B+\cos A \sin B \\
& \Rightarrow \sin (A+B)=\sin A \cos B+\cos A \sin B
\end{aligned}
$$

5) To prove: $\boldsymbol{\operatorname { s i n }}(A-B)=\sin A \cos B-\cos A \sin B$

We know from (4) that $\sin (A+B)=\sin A \cos B+\cos A \sin B$
If we fill in $-B$ instead of B :

$$
\begin{aligned}
& \sin (A+(-B))=\sin A \cos (-B)+\cos A \sin (-B) \\
& \Rightarrow \sin (A-B)=\sin A \cos (-B)+\cos A \sin (-B)
\end{aligned}
$$

Since $\cos (-B)=\cos (B)$ and $\sin (-B)=-\sin (B)$

$$
\Rightarrow \sin (A-B)=\sin A \cos B-\cos A \sin B
$$

6) To prove: $\cos 2 A=\cos ^{2} A-\sin ^{2} A$

We know from (3) that $\cos (A+B)=\cos A \cos B-\sin A \sin B$
If we replace B by A we get:

$$
\begin{aligned}
& \cos (A+A)=\cos A \cos A-\sin A \sin A \\
& \Rightarrow \cos 2 A=\cos ^{2} A-\sin ^{2} A
\end{aligned}
$$

7) To prove: $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$

$$
\tan (A+B)=\frac{\sin (A+B)}{\cos (A+B)}=\frac{\sin A \cos B+\cos A \sin B}{\cos A \cos B+\sin A \sin B} \quad \text { Using (3) and (4) }
$$

We now divide each of the four terms by $\cos A \cos B$:

$$
\begin{aligned}
& \tan (A+B)=\frac{\frac{\sin A \cos B}{\cos A \cos B}+\frac{\cos A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B}{\cos A \cos B}+\frac{\sin A \sin B}{\cos A \cos B}} \\
& \Rightarrow \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}
\end{aligned}
$$

8) To prove: Sine Rule: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

Area of the triangle shown $=\frac{1}{2} a b \sin C$

$$
\frac{1}{2} a b \sin C=\frac{1}{2} a c \sin B=\frac{1}{2} b c \sin A
$$

Dividing all three by $\frac{1}{2} a b c$ gives:

$$
\begin{aligned}
& \frac{\frac{1}{2} a b \sin C}{\frac{1}{2} a b c}=\frac{\frac{1}{2} a c \sin B}{\frac{1}{2} a b c}=\frac{\frac{1}{2} b c \sin A}{\frac{1}{2} a b c} \\
& \Rightarrow \frac{\sin C}{c}=\frac{\sin B}{b}=\frac{\sin A}{a} \\
& \Rightarrow \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
\end{aligned}
$$

9) To prove: Cosine Rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Consider the triangle shown on the right.
Using the distance formula to find a :

$$
a=\sqrt{(b \cos A-c)^{2}+(b \sin A-0)^{2}}
$$

$\Rightarrow a^{2}=b^{2} \cos ^{2} A+c^{2}-2 b c \cos A+b^{2} \sin ^{2} A$
$\Rightarrow a^{2}=b^{2}\left(\cos ^{2} A+\sin ^{2} A\right)+c^{2}-2 b c \cos A$
$\Rightarrow a^{2}=b^{2}(1)+c^{2}-2 b c \cos A$
$\Rightarrow a^{2}=b^{2}+c^{2}-2 b c \cos A$

Note:
$\frac{A}{x}$
$\cos A=\frac{x}{b}$
$\Rightarrow x=b \cos A$

$\sin A=\frac{y}{b}$
$\Rightarrow y=b \sin A$

