Topic 10: Trigonometry

1) The Basics:

2) Right Angled Triangles:

a) Pythagoras' Theorem:

Notes:

- We can use Pythagoras' Theorem if we know two sides of a right-angled triangle and we want to find the third side i.e.

- Make sure and label the hypotenuse correctly when using this theorem.

b) Sine, Cosine, Tan Ratios:

Notes:

- ' θ ' is a Greek letter called 'theta'. It is often used to represent angles.
- Another way to remember the sin, cos and tan ratios is Silly Old Harry, Caught A Herring, Trawling Off America (SOHCAHTOA)

3) Non-Right Angled Triangles:

Sine Rule:

- Used if you know a side and its opposite angle
- \quad Side ' a ' must be across from angle ' A ' and the same for ' b ' and ' B '

Example:

$$
\begin{aligned}
& \frac{a}{\operatorname{Sin} A}=\frac{b}{\operatorname{Sin} B} \\
& \frac{x}{\operatorname{Sin} 80}=\frac{7}{\operatorname{Sin} 60} \\
& x(\operatorname{Sin} 60)=7(\operatorname{Sin} 80) \text { (Cross } \\
& \text { Multiply) } \\
& \Rightarrow x=\frac{7(\operatorname{Sin} 80)}{\operatorname{Sin} 60}(\div \text { both sides by } \\
& \operatorname{Sin} 60) \\
& \Rightarrow x=7.96
\end{aligned}
$$

Cosine Rule:

- Used if Sine Rule can't be used
- The side you label ' a ' must be across from the angle you label ' A '. Label the unknown side ' a ' or label the unknown angle ' A '.

Example:

Find $\|Q R\|$ in the diagram below.	Label unknown side ' a ' $\begin{gathered} \text { "> } 70 \text { angle }=\text { ' } A^{\prime} \\ a^{2}=b^{2}+c^{2}-2 b c \cos A \\ a^{2}=(13)^{2}+(4)^{2}-2(13)(4) \cos 70 \\ a^{2}=185-35.57 \\ a^{2}=149.43 \\ a=\sqrt{149.43} \\ a=12.22 \end{gathered}$

Label unknown side ' a '

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

$$
a^{2}=(13)^{2}+(4)^{2}-2(13)(4) \cos 70
$$

$$
a^{2}=185-35.57
$$

$$
a^{2}=149.43
$$

$$
a=12.22
$$

4) Special Angles/Unit Circle:

a) Special Angles:

- Use the table below (pg 13 of Tables) to write down the \sin, cos or tan of the angles shown, in the form $\frac{a}{b}$

A (degrees)	0°	90°	180°	270°	30°	45°	60°
A (radians)	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
$\cos A$	1	0	-1	0	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
$\sin A$	0	1	0	-1	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$
$\tan A$	0	-	0	-	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

- Useful to know the right-angled triangles these ratios come

$$
\begin{aligned}
& \sin 30=\frac{O P P}{H Y P}=\frac{1}{2} \\
& \operatorname{Cos} 30=\frac{A D J}{H Y P}=\frac{\sqrt{3}}{2} \\
& \operatorname{Tan} 60=\frac{O P P}{A D J}=\frac{\sqrt{3}}{1}
\end{aligned}
$$

- Can also to simplify expressions into surd form Example: Write $\cos 30+\sin 30$ in surd form.

$$
\cos 30+\sin 60=\frac{\sqrt{3}}{2}+\frac{1}{2}=\frac{\sqrt{3}+1}{2}
$$

b) Unit Circle:

Notes:

- Need to be able to write sin, cos and tan of angles that are bigger than 90 in surd form, without a calculator.

Examples: Write i) $\sin 150$ and ii) $\cos 225$ iii) $\sin 300$ in surd form
i) 150 in quadrant $2=>$ will be positive for \sin

$$
\text { Ref Angle }=180-\theta=150 \Rightarrow \theta=30^{\circ}
$$

$$
\Rightarrow \sin 150=+\sin 30=+\frac{1}{2}
$$

ii) 225 in quadrant $3=>$ will be negative for cos

Ref Angle $=180+\theta=225 \Rightarrow \theta=45^{\circ}$
$\Rightarrow \cos 225=-\cos 45=-\frac{1}{\sqrt{2}}$
iii) 300 in quadrant $4=>$ will be negative for \sin

Ref Angle $=360-\theta=300 \Rightarrow \theta=60^{\circ}$
$\Rightarrow \sin 300=-\sin 60=-\frac{\sqrt{3}}{2}$

