a) Summations:

Notes:

A shorter way of writing a series is to use symbol sigma Σ.
> In general:
What the series finishes at.

The general term for the series.

What the series starts at.
Examples: i) Evaluate $\sum_{1}^{6} n^{2}$.
The general term for this pattern is n^{2} and it starts at $n=1$ and ends at $n=6$, so:

$$
\sum_{1}^{6} n^{2}=1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}=91
$$

c) Divisibility:

Example: Prove that $P(n)=13^{n}-5^{n}$ is divisible by $8, n \in N$.
Step 1: $P(1)=13^{1}-5^{1}=8$, which is divisible by 8 , so $P(1)$ is true.
Step 2: Assume $P(k)=13^{k}-5^{k}$ is divisible by 8
Step 3: $P(k+1)=13^{k+1}-5^{k+1}$

- Now manipulate $P(k+1)$ to try and link it to $P(k)$:

$$
13^{k+1}-5^{k+1}=13^{k} 13^{1}-5^{k} 5^{1}
$$

- We now split up this 13 into $(8+5)$:

$$
\begin{aligned}
& 13^{k} 13^{1}-5^{k} 5^{1} \\
& =13^{k}(8+5)-5^{k} 5^{1} \\
& =13^{k}(8)+13^{k}(5)-5^{k} 5^{1}
\end{aligned}
$$

- Factorise out the 5 out of the second and third terms:

$$
=13^{k}(8)+5\left(13^{k}-5^{k}\right)
$$

- Expression in the second set of brackets is $P(k)$, which we have assumed already is true.
$-1^{\text {st }}$ term is divisible by 8 , as there is a multiplication by 8 in it.
- Both terms of $P(k+1)$ divisible by 8 => whole thing divisible by 8.
- To finish our proof, we write:
$\Rightarrow P(k+1)$ is true, if $P(k)$ is true
$\Rightarrow P(n)$ is true $\forall n \in N . \quad$ Q.E.D

e) Inequalities:

Example: Prove that $2 n^{2}>(n+1)^{2}$ for $n \geq 3$.
Step 1: Smallest n can be is 3 , so:

$$
\begin{aligned}
& 2(3)^{2}>(3+1)^{2} \\
& 18>16, \text { which is true }
\end{aligned}
$$

Step 2: Assume $2 k^{2}>(k+1)^{2}$
Step 3: First, we will fill in $n=k+1$, so our series becomes:

$$
\begin{aligned}
& 2(k+1)^{2}>(k+1+1)^{2} \\
& =2(k+1)^{2}>(k+2)^{2}
\end{aligned}
$$

- Let's multiply out both sides:
$2\left(k^{2}+2 k+1\right)>k^{2}+4 k+4$
$\Rightarrow 2 k^{2}+4 k+2>k^{2}+4 k+4$
- From $\mathrm{P}(\mathrm{k})$, we know that $2 k^{2}>(k+1)^{2}$, so we can replace the $2 k^{2}$ with $(k+1)^{2}$ and the inequality should still hold: $(k+1)^{2}+4 k+2>k^{2}+4 k+4$
$\Rightarrow k^{2}+2 k+1+4 k+2>k^{2}+4 k+4$
$\Rightarrow 2 k+1+4 k+2>4 k+4$ (taking k^{2} from both sides)
$\Rightarrow 6 k-4 k>4-3$
$\Rightarrow 2 k>1$, which is always true for any k value greater than 3 .
$\Rightarrow P(k+1)$ is true, if $P(k)$ is true
$\Rightarrow P(n)$ is true $\forall n \in N$.
Q.E.D.

b) Proof by Induction:

Steps:

1. Prove proposition is true for smallest value of n (usually $n=$
1)...P(1)
2. Assume proposition is true for $n=k \ldots P(k)$
3. Show proposition is true for $n=k+1$ i.e. $P(k) \Rightarrow P(k+1)$

Notes:

> There are four different applications of Induction that we need to be familiar with:
a) Divisibility
b) Series
c) Inequalities
d) Proof of DeMoivre's Theorem

d) Series:

Example: Prove that $1+3+5+\ldots \ldots+(2 n-1)=n^{2}$
Step 1: If $n=1$, then that means the first term on the LHS, so:

$$
1=(1)^{2} \text { is true }
$$

Step 2: Assume $1+3+5+\cdots+(2 k-1)=k^{2}$
Step 3: First, fill in $n=k+1$, so our series becomes:

$$
\begin{aligned}
& 1+3+5+\ldots \ldots+(2 k-1)+(2(k+1)-1)=(k+1)^{2} \\
& \Rightarrow 1+3+5+\ldots .+(2 k-1)+(2 k+1)=(k+1)^{2}
\end{aligned}
$$

- But all the terms underlined above in red are $P(k)$, which we know from the previous step, is equal to k^{2}, so:

$$
k^{2}+(2 k+1)=(k+1)^{2}
$$

- And now squaring out the right-hand side gives:

$$
k^{2}+2 k+1=k^{2}+2 k+1
$$

- Again, we finish by stating:

$$
\begin{aligned}
& \Rightarrow P(k+1) \text { is true, if } P(k) \text { is true } \\
& \Rightarrow P(n) \text { is true } \forall n \in N . \quad \text { Q.E.D. }
\end{aligned}
$$

